Synthetic peptides and vaccines against parvovirus

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Virus or component thereof

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4241851, 4241861, A61K 3923, A61K 39235

Patent

active

057859744

DESCRIPTION:

BRIEF SUMMARY
This application is the national stage 371 filing of PCT/ES94/00006, filed Jan. 21, 1994, which claims priority to Spanish applications P 93/00117 filed Jan. 23, 1993 and P 94/00111 filed Jan. 20, 1994.


FIELD OF THE INVENTION

The present invention relates to chemically synthesized viral peptides related to the major antigen (VP2) of the autonomous parvovirus capsid and to assays and vaccines using the said peptides. The said peptides can, for instance, induce antibodies neutralizing for Canine Parvovirus (CPV), mink enteritis virus (MEV) and Porcine Parvovirus (PPV), whence they can be formulated in vaccines and respectively confer total protection against CPV, MEV and PPV in dogs, minks and pigs.


BACKGROUND OF THE INVENTION

Parvoviruses form a viral family having certain common features (Cotmore et al., Adv. Virus Res. 33:91-174 (1987)). They are the smallest known DNA viruses. Their genome is formed by a single stranded linear DNA molecule having a length of some 5.0 kb enclosed within a proteic capsid, being icosahedral in shape and having a size of approximately 25 nm. Two large open reading frames (ORF) are detected in the viral genome. The left ORF codes for non-structural proteins involved in viral replication whereas the right ORF codes for structural proteins forming the viral capsid, which is constituted by VP1, VP2 and VP3 proteins. The mRNA of both ORFs is polyadenylated and 3'-coterminal. There are approximately 60 copies of VP2 in the viral capsid and approximately 10 copies of VP1 (Wobble et al., Biochemistry 23, 6565-6569, 1984) which may be arranged as either homo- or heterodimers (Paradiso, J. Virol., 46, 94-102, 1983). The VP2 protein contains all the antigenic determinants involved in neutralizing the virus (Lopez de Turiso et al., J. Gen. Virol., 72, 2445-2456 (1991); Langeveld et al., J. Virol., Vol. 67, No. 2, 765-772 (1993); Lopez de Turiso et al., J. Virol., Vol. 66, No. 5, 2748-2753 (1991)).
Autonomous parvoviruses are responsible for a large number of diseases affecting human beings and animals of interest alike and may indeed be fatal because of the tendency of autonomous parvoviruses to replicate in proliferating cerebellum, lymphoid tissue, intestinal epithelium or foetal tissue cells. Among these autonomous parvoviruses are CPV, MEV, PPV, bovine parvovirus (BPV), goose parvovirus (GPV), feline panleukopenia virus (FPLV) and B19 parvovirus which affects human beings.
In this description the autonomous parvoviruses CPV and PPV will be focussed on as an example. Some of the main features of both parvoviruses are summarised hereinbelow.
Within the genus of autonomous parvoviruses, CPV is a member of the feline parvovirus subgroup. The other members of this subgroup, very related each other, are feline panleukopenia virus (FPLV) and MEV. CPV causes severe enteritis in dogs of all ages and myocarditis in puppies less than 12 weeks old. CPV was first isolated in 1978 (Burtonboy, G. et al., Arch. Virol. 61:1-11 (1979); Appel et al., Vet. Rec. 105. 156-179, (1979)) and it is believed to have arisen as a natural variant of FPLV or MEV.
Protein and DNA sequence studies and serologic studies show a large antigenic and genetic homology between CPV, FPLV, MEV and the Raccoon Parvovirus (Tratschin et al., J. Gen Virol. 61:33-41 (1982); Carlsson et al., J. Virol., 55, 574-582 (1985); Parrish et al., Arch. Virol. 72, 267-278 (1982); Reed et al., J. Virol. 62:266-276 (1988)). Despite this homology they are exquisitely specific in the "in vivo" host, although "in vitro" all viruses replicate in cat kidney cells (Appel et al., Vet. Rec. 105, 156-179 (1979); Trastschin et al., J. Gen. Virol., 61:33-41, (1982)). The CPV capsid contains two proteins with broadly overlapping amino acid sequences, VP1 (82-84 KDa) and VP2 (67-70 KDa) (Paradiso et al., J. Gen. Virol. 39, 800-807, (1982); Surleraux et al., Arch Virol., 82, 233-240 (1984); J. Gen. Virol. 62, 113-125, (1982)). VP2 in full capsids (holding DNA) is preferentially broken down by proteolytic digestion into 63-67 KDa VP3 (Paradiso et al.

REFERENCES:
patent: 5498413 (1996-03-01), Casal Alvarez
Casal et al Journal of Virology Nov. 1995 pp. 7274-7277 vol. 69 No. 11, Nov. 1994.
Langeveld et al Vaccine vol. 13 No. 11:1033-1037 1995.
Langeveld et al Journal of Virology vol. 68 No. 7:4506-4513, Jul. 1994.
Rimmelzwaan et al Journal General Virology vol. 71:2741-2745, 1990.
Lopez de Turiso et al, Journal of General Virology, vol. 72, No. 10, 1991 pp. 2445-2456.
Langeveld et al Journal of Virology, vol. 67, No. 2, 1993, pp. 765-772.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Synthetic peptides and vaccines against parvovirus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Synthetic peptides and vaccines against parvovirus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Synthetic peptides and vaccines against parvovirus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-21029

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.