Synthetic peptides and mixtures thereof for detecting HIV...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving virus or bacteriophage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S317000, C530S324000

Reexamination Certificate

active

06210874

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to novel cyclic peptides and combinations thereof alone and with linear and cyclic peptides for detecting HIV antibodies.
BACKGROUND OF THE INVENTION
Acquired Immune Deficiency Syndrome (AIDS), AIDS related complex (ARC) and pre-AIDS are thought to be caused by a retrovirus, the Human Immunodeficiency Virus (HIV). The first AIDS related virus, HIV-1 (also known as HTLV-III, LAV-1 and ARV) has been well characterized. Another pathogenic human retrovirus named HIV-2 (formerly LAV-2) has now been isolated from West African patients with AIDS. See, e.g., WO 87/04459. HIV-2 has recently been shown (Guyader et al. Nature 326 662-669, 1987) to share a number of conserved sequences with HIV-1 and the Simian Immunodeficiency Viruses (SIV).
Even though other numbering systems are used in the art, for ease of understanding and comparison we have adopted herein the amino acid numbering system of Ratner et al., Nature, 313, 277-284, 1985 for the HIV-1 proteins and that of Guyader et al., Nature 326, 662-669 (1987) for the HIV-2 proteins. The amino acids in the peptides of this invention are designated by the single letter code as follows: ala=A, arg=R, asn=N, asp=D, cys=C, gln=Q, glu=E, gly=G, his=H, ile=I, leu=L, lys=K, met=M, phe=F, pro=P, ser=S, thr=T, trp=W, tyr=Y and val=V.
The initial immunodiagnostic tests for the detection of antibodies in the serum of patients infected with HIV-1 utilized the whole virus as antigen. Second generation tests made use of polypeptide sequences obtained by the recombinant DNA methodology. Cabradilla et al. Bio/Technology 4 128-133 (1985) and Chang et al. Bio/Technology 3, 905-909 (1985), for example, refer to bacterially synthesized viral protein fragments of 82 and 102 amino acid residues, respectively. EPA 202314 and 114243 refer to recombinant polypeptides spanning regions of gp41 and gp120 that are immunoreactive alone or in mixtures. Shoeman et al., Anal. Biochem. 161, 370-379 (1987) refers to several polypeptides from gp41 that are immunoreactive with antibodies present in sera from patients infected with HIV-1. None of the above assay procedures is, however, totally acceptable. Their lack of sensitivity is a critical shortcoming. It may permit blood containing virus to escape detection and thereby potentially result in the infection of blood product receivers and continued infectivity by undiagnosed AIDS carriers. Their lack of specificity (false positives) is also a problem—healthy individuals are told they may have AIDS. Such false positive may be caused by impurities. They may also be caused by shared epitopes with viruses unrelated to AIDS present in these antigen preparations. In this regard, Gallaher, Cell 50 327-328, 1987 has reported that a region of gp41 of HIV-1 shares a sequence of five adjacent amino acid residues with the respiratory syncytial virus and of four equally distributed amino acids of the measles virus F1 glycoprotein. Thus, even highly purified recombinant polypeptides containing this region, or any other common regions yet to be discovered, could potentially be responsible for false positives and the attendant unacceptable specificity. Finally, these prior art assays do not permit detection of very low levels of HIV antibodies. This disadvantages the assays in terms of their ability to detect AIDS infections at a very early stage, thereby delaying the start of treatment and permitting the possible spread of infection by blood samples and other body fluids before effective detection of AIDS infection.
In an attempt to solve these problems, diagnostic means and methods employing shorter HIV antigens are now being developed. Empirical methods to identify peptide sequences corresponding to unique and highly conserved epitopes of the HIV viruses are also now available. These methods are, for example, capable of assisting in the selection of short amino acid sequences which are more likely to be exposed on the surface of the native protein and thus useful as assay tools (for a review see Hopp and Woods, J. Immunol. Met. 88, 1-18, 1986). Although somewhat useful, these methods are no more than indicative. Nonetheless, they have been applied to identify epitopes present on the surface of viruses responsible for AIDS. For example, U.S. Pat. No. 4,629,783, International Patent Appl. PCT/US86/00831 and EPA 303224 refer to various synthetic peptides from the p18, p25, gp41 and gp120 proteins. These peptides are advantaged by the relative ease and lower cost with which they can be prepared and more importantly because of the reduced risk of obtaining false positives with them due to impurities or the presence of shared epitopes with viral proteins not related to AIDS.
While these smaller peptides are advantaged in terms of specificity over the earlier recombinant polypeptide and whole virus approaches to the diagnosis of AIDS infections, they have been less than satisfactory in terms of overall sensitivity, perhaps because the synthesized epitope is not able to assume and maintain a conformation that is recognized by the AIDS antibodies. Although the number of serum samples tested in each of these cases is very limited, specificity (few if any false positives) was found to be very high (95%-100%) with the small synthetic peptides but the overall sensitivity varied between 80% and 100%. In fact, in the only example where 100% sensitivity was attained only ten samples were tested. For example, Smith et al., J. Clin. Microbiol. 25 1498-1504, 1987 refers to two overlapping peptides, E32 and E34, that are highly immunoreactive. No false positives, out of 240 seronegative specimens, were obtained but the peptides missed three seropositive samples out of 322 (sensitivity of 99.1%). Wang et al. (Proc. Natl. Acad. Sci 83, 6159-6163, 1986) refers to a series of overlapping peptides (including amino acid residues of Smith's E32 and E34 peptides) among which one 21-mer peptide showed 100% specificity and 98% sensitivity (out of 228 seropositive samples taken from patients with AIDS, 224 were found positive with this peptide). And U.S. patent application 120,027, filed Nov. 13, 1987 refers to a short synthetic peptide spanning residues 606 to 620 (SGKLICTTAVPWNAS) of gp41 (HIV-1). This peptide is said to be immunoreactive with antibodies of patients infected by the AIDS viruses. The specificity was also excellent (63/63) but 6 seropositive specimens out of 57 confirmed positive could not be detected (sensitivity of 89%).
Gnann et al. (J. Virol. 61, 2639-2641, 1987 and J. Infec. Dis 156, 261-267, 1987) also refer to a series of overlapping peptides from a suspected immunodominant region of gp41 (HIV-1). Gnann et al. concluded that cys-605 was essential for the immunoreactivity of that segment of the gp41-(HIV-1) protein. They reported that a peptide having the sequence SGKLIC (606-611) was not immunoreactive with any of the 22 HIV-1 positive sera tested, while the addition of the cysteine residue to the N-terminus restored some immunoreactivity, 21 of 44 sera reacted with the 7-mer peptide (48% sensitivity).
Gnann et al. (J. Virol) also speculated that the cysteine residues at positions 605 and 611 of gp41 (HIV-1) might play a role in the antigenic conformation of this region perhaps by the formation of a cyclic structure via disulfide bonding. However, Gnann et al. never demonstrated that they did have a synthetic peptide wherein the two cysteine groups were linked by disulfide bonds.
Although Gnann et. al refers to peptides which are useful in identifying HIV-1 antibodies, even its peptides lack 100% sensitivity. For example, Gnann et al. (J. Virol. 61, 2639-2641, (1987)) report that while their 600-611 amino acid sequence detected 22 out of 22 positive sera, they also reported that similar tests carried out at the Centers for Disease Control, Atlanta, Ga. with the same 12-amino acid sequence (600-611) missed 1 out of 79 positive sera. And Gnann et

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Synthetic peptides and mixtures thereof for detecting HIV... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Synthetic peptides and mixtures thereof for detecting HIV..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Synthetic peptides and mixtures thereof for detecting HIV... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2443880

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.