Synthetic hepatitis C genes

Chemistry: molecular biology and microbiology – Vector – per se

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C536S023720

Reexamination Certificate

active

06653125

ABSTRACT:

STATEMENT REGARDING FEDERALLY-SPONSORED R&D
Not applicable.
REFERENCE TO MICROFICHE APPENDIX
Not applicable.
FIELD OF THE INVENTION
Not applicable.
BACKGROUND OF THE INVENTION
This invention relates to novel nucleic acid pharmaceutical products, specifically nucleic acid vaccine products. The nucleic acid vaccine products, when introduced directly into muscle cells, induce the production of immune responses which specifically recognize Hepatitis C virus (HCV).
Hepatitis C Virus
Non-A, Non-B hepatitis (NANBH) is a transmissible disease (or family of diseases) that is believed to be virally induced, and is distinguishable from other forms of virus-associated liver disease, such as those caused by hepatitis A virus (HAV), hepatitis B virus (HBV), delta hepatitis virus (HDV), cytomegalovirus (CMV) or Epstein-Barr virus (EBV). Epidemiologic evidence suggests that there may be three types of NANBH: the water-borne epidemic type; the blood or needle associated type; and the sporadically occurring (community acquired) type. However, the number of causative agents is unknown. Recently, a new viral species, hepatitis C virus (HCV) has been identified as the primary (if not only) cause of blood-associated NANBH (BB-NANBH). Hepatitis C appears to be the major form of transfusion-associated hepatitis in a number of countries, including the United States and Japan. There is also evidence implicating HCV in induction of hepatocellular carcinoma. Thus, a need exists for an effective method for preventing or treating HCV infection: currently, there is none.
The HCV may be distantly related to the flaviviridae. The Flavivirus family contains a large number of viruses which are small, enveloped pathogens of man. The morphology and composition of Flavivirus particles are known, and are discussed in M. A. Brinton, in “The Viruses: The Togaviridae And Flaviviridae” (Series eds. Fraenkel-Conrat and Wagner, vol. eds. Schlesinger and Schlesinger, Plenum Press, 1986), pp. 327-374. Generally, with respect to morphology, Flaviviruses contain a central nucleocapsid surrounded by a lipid bilayer. Virions are spherical and have a diameter of about 40-50 nm. Their cores are about 25-30 nm in diameter. Along the outer surface of the virion envelope are projections measuring about 5-10 nm in length with terminal knobs about 2 nm in diameter. Typical examples of the family include Yellow Fever virus, West Nile virus, and Dengue Fever virus. They possess positive-stranded RNA genomes (about 11,000 nucleotides) that are slightly larger than that of HCV and encode a polyprotein precursor of about 3500 amino acids. Individual viral proteins are cleaved from this precursor polypeptide.
The genome of HCV appears to be single-stranded RNA containing about 10,000 nucleotides. The genome is positive-stranded, and possesses a continuous translational open reading frame (ORF) that encodes a polyprotein of about 3,000 amino acids. In the ORF, the structural proteins appear to be encoded in approximately the first quarter of the N-terminal region, with the majority of the polyprotein attributed to non-structural proteins. When compared with all known viral sequences, small but significant co-linear homologies are observed with the nonstructural proteins of the Flavivirus family, and with the pestiviruses (which are now also considered to be part of the Flavivirus family).
Intramuscular inoculation of polynucleotide constructs, i.e., DNA plasmids encoding proteins have been shown to result in the in situ generation of the protein in muscle cells. By using cDNA plasmids encoding viral proteins, both antibody and CTL responses were generated, providing homologous and heterologous protection against subsequent challenge with either the homologous or cross-strain protection, respectively. Each of these types of immune responses offers a potential advantage over existing vaccination strategies. The use of PNVs (polynucleotide vaccines) to generate antibodies may result in an increased duration of the antibody responses as well as the provision of an antigen that can have both the exact sequence of the clinically circulating strain of virus as well as the proper post-translational modifications and conformation of the native protein (vs. a recombinant protein). The generation of CTL responses by this means offers the benefits of cross-strain protection without the use of a live potentially pathogenic vector or attenuated virus.
Therefore, this invention contemplates methods for introducing nucleic acids into living tissue to induce expression of proteins. The invention provides a method for introducing viral proteins into the antigen processing pathway to generate virus-specific immune responses including, but not limited to, CTLs. Thus, the need for specific therapeutic agents capable of eliciting desired prophylactic immune responses against viral pathogens is met for HCV virus by this invention. Of particular importance in this therapeutic approach is the ability to induce T-cell immune responses which can prevent infections even of virus strains which are heterologous to the strain from which the antigen gene was obtained. Therefore, this invention provides DNA constructs encoding viral proteins of the hepatitis C virus core, envelope (E1), nonstructural (NS5) genes or any other HCV genes which encode products which generate specific immune responses including but not limited to CTLs.
DNA Vaccines
Benvenisty, N., and Reshef, L. [PNAS 83, 9551-9555, (1986)] showed that CaCl
2
-precipitated DNA introduced into mice intraperitoneal ly (i.p.), intravenously (i.v.) or intramuscularly (i.m.) could be expressed. The i.m. injection of DNA expression vectors without CaCl
2
treatment in mice resulted in the uptake of DNA by the muscle cells and expression of the protein encoded by the DNA. The plasmids were maintained episomally and did not replicate. Subsequently, persistent expression has been observed after i.m. injection in skeletal muscle of rats, fish and primates, and cardiac muscle of rats. The technique of using nucleic acids as therapeutic agents was reported in WO90/11092 (Oct. 4, 1990), in which polynucleotides were used to vaccinate vertebrates.
It is not necessary for the success of the method that immunization be intramuscular. The introduction of gold microprojectiles coated with DNA encoding bovine growth hormone (BGH) into the skin of mice resulted in production of anti-BGH antibodies in the mice. A jet injector has been used to transfect skin, muscle, fat, and mammary tissues of living animals. Various methods for introducing nucleic acids have been reviewed. Intravenous injection of a DNA:cationic liposome complex in mice was shown by Zhu et al., [Science 261:209-211 (Jul. 9, 1993) to result in systemic expression of a cloned transgene. Ulmer et al., [Science 259:1745-1749, (1993)] reported on the heterologous protection against influenza virus infection by intramuscular injection of DNA encoding influenza virus proteins.
The need for specific therapeutic and prophylactic agents capable of eliciting desired immune responses against pathogens and tumor antigens is met by the instant invention. Of particular importance in this therapeutic approach is the ability to induce T-cell immune responses which can prevent infections or disease caused even by virus strains which are heterologous to the strain from which the antigen gene was obtained. This is of particular concern when dealing with HIV as this virus has been recognized to mutate rapidly and many virulent isolates have been identified [see, for example, LaRosa et al., Science 249:932-935 (1990), identifying 245 separate HIV isolates]. In response to this recognized diversity, researchers have attempted to generate CTLs based on peptide immunization. Thus, Takahashi et al., [Science 255:333-336 (1992)] reported on the induction of broadly cross-reactive cytotoxic T cells recognizing an HIV envelope (gp160) determinant. However, those workers recognized the difficulty in achieving a truly cross-reactive CTL response and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Synthetic hepatitis C genes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Synthetic hepatitis C genes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Synthetic hepatitis C genes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3122045

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.