Synthesis of energetic thermoplastic elastomers containing...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – From reactant having at least one -n=c=x group as well as...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C528S066000, C528S078000

Reexamination Certificate

active

06815522

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to energetic thermoplastic elastomers which are useful as binders of high-energy compositions, such as propellants, especially rocket propellants and gun propellants, explosive munitions, gas generants of vehicle supplemental restraint systems, or the like, and to methods for synthesizing the same.
2. Description of the Related Art
Solid high-energy compositions, such as propellants, explosives, gasifiers, and the like comprise solid particulates, such as fuel particulates and/or oxidizer particulates, dispersed and immobilized throughout a polymeric binder matrix.
Conventional solid composite propellant binders utilize cross-linked elastomers in which prepolymers are cross-linked by chemical curing agents. As outlined in detail in U.S. Pat. No. 4,361,526, there are important disadvantages to using cross-linked elastomers as binders. Cross-linked elastomers must be cast within a short period of time after addition of the curative, which time period is known as the “pot life.” Disposal of a cast, cross-linked propellant composition is difficult, and usually is accomplished by burning, which poses environmental problems. Furthermore, current state-of-the-art propellant compositions have serious problems that include their use of nonenergetic binders which have lower performance and high end-of-mix viscosities.
In view of the inherent disadvantages associated with the use of cross-linked elastomeric polymers as binder materials, there has been considerable interest in developing thermoplastic elastomers suitable as binders for solid, high energy compositions. However, many thermoplastic elastomers fail to meet important requirements expected of propellant formulations, particularly the requirement of being processable below about 120° C., it being desirable that a thermoplastic elastomeric polymer for use as a binder in a high energy system have a melting temperature of between about 60° C. and about 120° C. The melting temperature is desirably at least about 60° C. because these compositions may be subject to somewhat elevated temperatures during storage and transport, and significant softening of the compositions at such elevated temperatures is unwanted. The setting of the melting temperature at not more than about 120° C. is determined by the instability, at elevated temperatures, of many components which ordinarily go into the compositions, particularly oxidizer particulates and energetic plasticizers. Many thermoplastic elastomers exhibit high melt viscosities which preclude high solids loading and many show considerable creep and/or shrinkage after processing. Thermoplastic elastomers typically obtain their thermoplastic properties from segments that form glassy domains which may contribute to physical properties adverse to their use as binders. Cross-linkable thermoplastic elastomers are block copolymers with the property of forming physical cross-links at predetermined temperatures. One thermoplastic elastomer, e.g., Kraton, brand TPE, obtains this property by having the glass transition point of one component block above room temperature. At temperatures below 109° C., the glassy blocks of Kraton form glassy domains and thus physically cross-link the amorphous segments. The strength of these elastomers depends upon the degree of phase separation. Thus, it remains desirable to have controlled, but significant, immiscibility between the two types of blocks, which is a function of their chemical structure and molecular weight. On the other hand, as the blocks become more immiscible, the melt viscosity increases, thus having a deleterious effect on the processability of the material.
Above-mentioned U.S. Pat. No. 4,361,526 proposes a thermoplastic elastomeric binder which is a block copolymer of a diene and styrene, the styrene blocks providing a meltable crystal structure and the diene blocks imparting rubbery or elastomeric properties to the copolymer. The '526 patent states that this polymer is processed with a volatile organic solvent. Solvent processing is undesirable inasmuch as the dissolved composition cannot be cast in a conventional manner, e.g., into a rocket motor casing. Furthermore, solvent-based processing presents problems with respect to removal and recovery of solvent.
The preparation of energetic thermoplastic elastomers prepared from polyoxetane block copolymers has been proposed in U.S. Pat. No. 4,483,978 to Manser and U.S. Pat. No. 4,806,613 to Wardle (“the '613 patent”), the complete disclosures of which are incorporated herein by reference to the extent that these disclosures are compatible with this invention. According to the latter, these materials overcome the disadvantages associated with conventional cross-linked elastomers such as limited pot-life, high end-of-mix viscosity, and scrap disposal problems.
The thermoplastic materials proposed by the '613 patent involve elastomers having both (A) and (B) blocks, each derived from cyclic ethers, such as oxetane and oxetane derivatives and tetrahydrofuran (THF) and tetrahydrofuran derivatives. The monomer or combination of monomers of the (A) blocks are selected for providing a crystalline structure at usual ambient temperatures, such as below about 60° C., whereas the monomer or combination of monomers of the (B) blocks are selected to ensure an amorphous structure at usual ambient temperatures, such as above about −20° C. Typical of these materials is the random block copolymer (poly(3-azidomethyl-3-methyloxetane)-poly(3,3-bis(azidomethyl)oxetane), also known as poly(AMMO/BAMO). These block copolymers have good energetic and mechanical properties. Additionally, the block copolymers can be processed without solvents to serve as binders in high performance, reduced vulnerability explosive, propellant, and gas generant formulations. Advantageously, the block copolymers exhibit good compatibility with most materials used in such energetic formulations.
However, the block copolymers known in the art suffer from disadvantages that are a consequence of the short linking groups connecting the blocks. More specifically, the short linking groups attribute relatively low softening temperatures to the copolymers. In tactical and other environments in which the binder is exposed to extreme environmental conditions, the binder should be capable of maintaining their structure integrities without creeping or slumping, and be characterized by a reasonable modulus at about 60° C. or above. While the energetic binders disclosed in the '613 patent generally satisfy the processing requirements, they tend to soften unacceptably at elevated temperatures that sometime are encountered in tactical and similar uses.
One proposed solution to addressing this problem and imparting desired high temperature attributes to the energetic binder is to select hard blocks, i.e., A blocks, having melting temperatures well above 60° C. However, the higher softening temperatures of such A blocks deleteriously affects the processability of the binder by requiring higher and sometimes dangerous processing temperatures. Although solvents may be used to improve processability, the introduction of solvents limits the size of the articles that can be made and increases the complexity and costs of the process.
Another desired attribute of energetic binders is that the binders maintain strength, toughness, and strain capability at extremely low temperatures, preferably below about −40° C. The polyethers used as the soft blocks, i.e., B blocks, in energetic thermoplastic elastomer binders tend to possess glass transition temperatures T
g
in the range of −15° C. to −30° C. Below these temperatures, the thermoplastic elastomer binders become brittle and lack sufficient toughness and strain capability. While plasticization of the soft B block potentially could be a solution to lowering T
g
of the thermoplastic elastomer, all attempts at plasticizing the B block have been found to require unacceptable plasticizer-to-polymer rati

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Synthesis of energetic thermoplastic elastomers containing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Synthesis of energetic thermoplastic elastomers containing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Synthesis of energetic thermoplastic elastomers containing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3296108

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.