Syndiotactic polystyrene alloy compositions

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C525S222000, C525S240000, C525S241000, C524S442000, C428S500000, C428S098000, C428S461000, C428S463000

Reexamination Certificate

active

06593428

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to thermoplastic alloy compositions comprising syndiotactic polystyrene (SPS). This invention specifically relates to thermoplastic alloy compositions comprising SPS, an epoxy group-containing ethylene copolymer, an acid group-containing styrene copolymer, and optionally a styrene-containing block copolymer.
2. Description of the Related Art
Previous patents have taught that using a styrene-containing block or graft copolymer can help compatibilize a rubber phase with SPS. For example, U.S. Pat. No. 5,902,850 discusses the use of styrene block or graft copolymers with a styrene content less than 85% to compatibilize a polyolefin modifier with syndiotactic polystyrene. The polyolefins claimed in U.S. Pat. No. 5,902,850 are primarily homopolymers or copolymers based on ethylene or propylene monomers.
In addition, U.S. Pat. No. 5,543,462 has taught that using a rubbery material with polar groups such as maleic anhydride or epoxy can act as an effective modifier for SPS. Although U.S. Pat. No. 5,543,462 discloses modifiers which contain reactive groups, the modifiers described are all rubbery elastomers.
Although the prior art describing SPS modification provides compositions with an increase in ductility and extensibility, there exists a need in the art for compositions with more efficient and effective modifiers, providing for improved alloy compositions that contain a minimum amount of modifier.
BRIEF SUMMARY OF THE INVENTION
The invention provides a polymer composition comprising a melt blend of
(a) about 10 to 95 wt. % syndiotactic polystyrene polymer;
(b) about 5 to 60 wt. % rubbery ethylene copolymer comprising a first reactive group; and
(c) about 1 to 40 wt. % styrene copolymer comprising a second reactive group,
wherein the first reactive group and the second reactive group are reactive with each other and the total of the weight % of components (a), (b) and (c) is 100%.
The invention further provides a polymer composition comprising a melt blend of
(a) about 50 to 85 wt. % syndiotactic polystyrene polymer;
(b) about 15 to 30 wt. % rubbery ethylene copolymer comprising a first reactive group; and
(c) about 3 to 20 wt. % styrene copolymer comprising a second reactive group,
wherein the first reactive group and the second reactive group are reactive with each other and the total of the weight % of components (a), (b) and (c) is 100%.
DETAILED DESCRIPTION OF THE INVENTION
The invention herein provides a polymer composition comprising a melt blend of a syndiotactic polystyrene (SPS), a rubbery ethylene-based copolymer containing a first reactive group, and a non-rubbery styrene-based copolymer containing at least one second reactive group, wherein the first and second reactive groups are capable of reacting with each other. The composition exhibits a partially cross-linked rubbery phase having improved compatibility with the SPS.
Surprisingly, this combination of a reactive styrene copolymer and an ethylene copolymer containing reactive groups produces improvements even when the reactive styrene copolymer is a simple random styrene-based copolymer with styrene content greater than 85 wt. %, contrary to the teaching of U.S. Pat. No. 5,902,850 which requires styrene block or graft copolymers. This novel composition demonstrates improved physical properties, such as improved elongation at break and/or improved toughness. The composition is useful for a variety of applications, such as molded articles, films, sheets, wire and cable coatings, and extruded tube or hose.
The invention specifically provides a polymer composition comprising a melt blend of (a) about 10 to 95 wt. % syndiotactic polystyrene polymer (SPS); (b) about 5 to 60 wt. % rubbery ethylene copolymer comprising a first reactive group; and (c) about 1 to 40 wt. % styrene copolymer comprising a second reactive group. Components (a), (b) and (c) total to 100 wt. %. The first reactive group and second reactive group are reactive with each other, thus allowing the compatibilization to take place.
Syndiotactic polystyrene (SPS) is a polystyrene having a syndiotactic configuration. The stereochemical structure of the polymer is syndiotactic meaning that the phenyl groups or substituted phenyl groups which are in the side chains of the polymer are located alternately on opposite sides relative to the main chain of the polymer that consists of carbon-carbon bonds. The SPS resin of component (a) preferably has a high melting point (270° C. melting peak) and is a substantially linear polymer having a relatively high molecular weight. Such resins are available commercially such as Questra®, sold by Dow Chemical. Component (a) may also comprise SPS that contains comonomers, such as p-methylstyrene or divinylbenzene. The alloy composition described by this invention preferably contains about 10% to about 95% by weight (a), most preferably about 50% to 85% by weight. Compositions with (a) greater than 95 wt % are generally too brittle and lack a high degree of extensibility.
Rubbery ethylene copolymers (b) useful in the compositions of the invention are ethylene copolymers copolymerized with one or more of a first reactive group. By an elastomeric or “rubbery” polymer is meant a polymer having a flexural modulus (of unfilled pure elastomeric polymer of 35 MPa or less when measure by ASTM D790, and not having a Tg above 30° C., preferably not having a Tg about 0° C. Glass transition temperatures are measured by ASTM D-3418 at a heating rate of 20° C./min and the Tg is taken as the midpoint of the transition. Conversely, a “non-rubbery” or non-elastomeric polymer would have a flexural modulus of greater than 35 MPa and a Tg greater than 30° C. The first reactive group may be unsaturated epoxides of 4-11 carbon atoms (such as glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether, vinyl glycidyl ether, and glycidyl itaconate), unsaturated isocyanates of 2-11 carbon atoms (such as vinyl isocyanate and isocyanato-ethyl methylacrylate, aziridine, silanes, or oxazoline), and may additionally contain an alkyl acrylate, alkyl methacrylate, carbon monoxide, sulfur dioxide and/or vinyl ether, where the alkyl radical is from 1-12 carbon atoms.
In particular, the rubbery ethylene copolymer is a copolymer of at least 50% by weight ethylene, 0.5-15% by weight of at least one first reactive group selected from the group consisting of (i) an unsaturated epoxide of 4-11 carbon atoms, (ii) an unsaturated isocyanate of 2-11 carbon atoms, (iii) an alkoxy or alkyl silane wherein the alkyl group is from 1-12 carbon atoms, and (iv) an oxazoline, and 0-49% by weight of a moiety selected from at least one of an alkyl acrylate, alkyl methacrylate, vinyl ether, carbon monoxide, and sulfur dioxide, where the alkyl and ether groups above are 1-12 carbon atoms.
Preferred rubbery ethylene copolymers (b) for use in the compositions of the present invention include ethylene/glycidyl acrylate, ethylene
-butyl acrylate/glycidyl acrylate, ethylene/methylacrylate/glycidyl acrylate, ethylene/glycidyl methacrylate, ethylene
-butyl acrylate/glycidyl methacrylate and ethylene/methylacrylate/glycidy methacrylate copolymers. The most preferred rubbery ethylene copolymer for use in the compositions of the present invention are copolymers derived from ethylene
-butyl acrylate/glycidyl methacrylate and ethylene/glycidyl methacrylate.
A particularly preferred rubbery ethylene copolymer (b) is a copolymer of at least 55% by weight ethylene, 1-10% by weight of an unsaturated epoxide of 4-11 carbon atoms, and 0-35% by weight of at least one alkyl acrylate, alkyl methacrylate, or mixtures therof where the alkyl groups contain 1-8 carbon atoms. Preferred unsaturated epoxides are glycidyl methacrylate and glycidyl acrylate which are present in the copolymer at a level of 1-7% by weight. Preferably, ethylene content is greater than 60% by weight and the third moiety is selected from methyl acrylate, iso-butyl acrylate, and n-butyl acrylate. The alloy composition described by this invention prefe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Syndiotactic polystyrene alloy compositions does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Syndiotactic polystyrene alloy compositions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Syndiotactic polystyrene alloy compositions will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3106951

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.