Optical: systems and elements – Deflection using a moving element – Using a periodically moving element
Reexamination Certificate
1999-06-04
2003-02-11
Pascal, Leslie (Department: 2633)
Optical: systems and elements
Deflection using a moving element
Using a periodically moving element
Reexamination Certificate
active
06519060
ABSTRACT:
TECHNICAL FIELD
The present application relates in general to optical communications, and more particularly to using a wavelength slicer for wavelength division multiplex communications.
BACKGROUND
Optical wavelength division multiplexing has gradually become the standard backbone network for fiber optical communication systems. WDM systems employ signals consisting of a number of different wavelength optical signals, known as carrier signals or channels, to transmit information over optical fibers. Each carrier signal is modulated by one or more information signals. As a result, a significant number of information signals may be transmitted over a single optical fiber using WDM technology. These optical signals are repeatedly amplified by erbium-doped fiber amplifiers (EDFA) along the network to compensate for transmission losses. The amplified signals reach the receiving end and are detected using WDM filters followed by photo receivers.
Fiber optic communications networks are typically arranged with a plurality of terminals in any of a number of topological configurations. The simplest configuration is two terminals communicating data over an optical link. This can be extended to a daisy-chain configuration in which three or more terminals are connected in series by a plurality of optical links. Ring configurations are also used, as well as other two-dimensional mesh networks. In each case, the optical link between two terminals typically includes a plurality of optical fibers for bidirectional communications, to provide redundancy in the event of a fault in one or more of the optical fibers, and for future capacity.
Despite the substantially higher fiber bandwidth utilization provided by WDM technology, a number of serious problems must be overcome, for example, multiplexing, demultiplexing, and routing optical signals, if these systems are to become commercially viable. The addition of the wavelength domain increases the complexity for network management because processing now involves both filtering and routing. Multiplexing involves the process of combining multiple channels (each defined by its own frequency spectrum) into a single WDM signal. Demultiplexing is the opposite process in which a single WDM signal is decomposed into individual channels or sets of channels. The individual channels are spatially separated and coupled to specific output ports. Routing differs from demultiplexing in that a router spatially separates the input optical channels to output ports and permutes these channels according to control signals to create a desired coupling between an input channel and an output port.
Note that each carrier has the potential to carry gigabits of information per second. Current technology allows for about forty channels or optical carriers, each of a slightly different wavelength, to travel on a single-mode fiber using a single WDM signal. The operating bands are limited by the EDFA amplifier (C) band, thus the increase in the number of channels has been accomplished by shrinking the spacing between the channels, and by adding new bands. The current standard is 50 and 100 GHz between optical channels, whereas older standards were 200 and 400 GHz spacings. Another characteristic of the WDM signal is the modulation rate. As the modulation rate is increased, more data can be carried. Current technology allows for a modulation rate of 10 Gigabits per second (Gbs). This has been recently increased from 2.5 Gbs. The 10 Gbs standard is SONET OC-192, wherein SONET is synchronized optical network and OC is optical carrier. The increase in the modulation rate translates into a wider signal in the spatial domain. Consequently, the wider signal and smaller spacing means that the signals are very close together (in the spatial domain), and thus are very hard to separate. As a result, crosstalk may occur from adjacent signals.
One prior art separation method is to divide the spatial band into four sub-bands, each about 200 GHz wide. The filters used to perform the separation have significant side slopes (i.e., they produce trapezoidal shapes), and thus overlap occurs between the bands. To prevent crosstalk, guard bands are placed at the boundaries of the sub-bands, where no signals are placed. These guard bands consume significant bandwidth, i.e., about 30%. Additional stages could be added to achieve 100 GHz bands, but this increases the bandwidth consumed by the guard bands.
Also dropping and adding channels is a problem. For example, in a group of 16 carrier channels, 4 might need to be dropped for distribution to a local metropolitan area and the other 12 carrier channels might need to be passed on to other remote destinations. This is typically accomplished by demodulating all 16 optical carriers to obtain 16 electronic signals, then remodulating the 12 carriers and processing the 4 electrical signals. Optical-to-electrical (O-E) converters are used at switching centers to demodulate all the optical signals, including those not intended for local distribution. The “long-haul” signals are processed to modulate a laser (E-O) converter for launch into optical fiber to their ultimate destinations. The channels vacated by taking off signals for local distribution can now be filled by new carriers to move signals from local switches to remote destination. These electrical-to-optical-to-electrical (OEO) “add/drop” operations are critical to network performance but require that all carriers on a fiber be demodulated, processed, and remodulated in order to pick off even a small fraction of the data flowing on the fiber. In the current art, there is no effective non-OEO method of simultaneously dropping a DWDM carrier with mixed traffic for local distribution while simultaneously passing the carrier through to a remote location.
SUMMARY OF THE INVENTION
This invention provides an optical wavelength add/drop multiplexer for communications between two optical links supporting wavelength division multiplexing (WDM). A wavelength slicer spatially separates the input signal into two sets of channels. An optical filter such as an interference filter, spatially separates the set of the input channels into an array of separated channels. A programmable optical add/drop switch array selectively routes channels from an array of input ports to an array of drop ports, substitutes channels from an array of add ports in place of the dropped channels, and routes the remaining input channels and added channels to an array of output ports. The channels from the output ports of the said add/drop switch array are then combined and transmitted into the second optical link. A network of wavelength slicers can be used to spatially separate the input signal into a larger number of sets of channels that can either be accessed by a number of add/drop switch arrays, or pass unchanged as “express lanes” to the second optical link. In an alternative embodiment, a circulated drop filter consisting of an optical circulator and a series of fiber Bragg gratings is used to select a predetermined series of input channels to be processed by the add/drop switch array, with the remaining channels being passed by the circulated drop filter as express lanes.
A primary object of the present invention is to provide an optical wavelength add/drop multiplexer that can separate multiple channels from an input WDM signal and selectively substitute channels from series of add ports in place of the input channels.
Another object of the present invention is to provide an optical wavelength add/drop multiplexer that can be used to augment the channel capacity of an existing central office equipment for optical communications.
These and other advantages, features, and objects of the present invention will be more readily understood in view of the following detailed description and the drawing.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages o
Baker & Botts L.L.P.
Chorum Technologies LP
Pascal Leslie
LandOfFree
Synchronous optical network in frequency domain does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Synchronous optical network in frequency domain, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Synchronous optical network in frequency domain will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3131143