Multiplex communications – Communication techniques for information carried in plural... – Combining or distributing information via time channels
Reexamination Certificate
2000-03-31
2003-09-30
Kizou, Hassan (Department: 2662)
Multiplex communications
Communication techniques for information carried in plural...
Combining or distributing information via time channels
C370S311000, C370S280000
Reexamination Certificate
active
06628675
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to wireless communications systems. In particular, the invention relates to reducing the power consumption in a remote unit in a wireless communication system utilizing slotted paging.
BACKGROUND OF THE INVENTION
A wireless communication system may comprise multiple remote units and multiple base stations.
FIG. 1
exemplifies an embodiment of a terrestrial wireless communication system with three remote units
10
A,
10
B and
10
C and two base stations
12
. In
FIG. 1
, the three remote units are shown as a mobile telephone unit installed in a car
10
A, a portable computer remote
10
B, and a fixed location unit
10
C such as might be found in a wireless local loop or meter reading system. Remote units may be any type of communication unit such as, for example, hand-held personal communication system units, portable data units such as a personal data assistant, or fixed location data units such as meter reading equipment.
FIG. 1
shows a forward link
14
from the base station
12
to the remote units
10
and a reverse link
16
from the remote units
10
to the base stations
12
.
Communication between remote units and base stations, over the wireless channel, can be accomplished using one of a variety of multiple access techniques which facilitate a large number of users in a limited frequency spectrum. These multiple access techniques include time division multiple access (TDMA), frequency division multiple access (FDMA), and code division multiple access (CDMA). An industry standard for CDMA is set forth in the TIA/EIA Interim Standard entitled “Remote unit-Base Station Compatibility Standard for Dual-Mode Wideband Spread Spectrum Cellular System”, TIA/EIAJIS-95, and its progeny (collectively referred to here as IS-95), the contents of which are incorporated by reference herein in their entirety. Additional information concerning a CDMA communication system is disclosed in U.S. Pat. No. 4,901,307, entitled SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL REPEATERS, (the '307 patent) assigned to the assignee of the present invention and incorporated in its entirety herein by reference.
In the '307 patent, a multiple access technique is disclosed where a large number of mobile telephone system users, each having a transceiver, communicate through base stations using CDMA spread spectrum communication signals. The CDMA modulation techniques disclosed in the '307 patent offer many advantages over other modulation techniques used in wireless communication systems such as TDMA and FDMA. For example, CDMA permits the frequency spectrum to be reused multiple times, thereby permitting an increase in system user capacity. Additionally, use of CDMA techniques permits the special problems of the terrestrial channel to be overcome by mitigation of the adverse effects of multipath, e.g. fading, while also exploiting the advantages thereof.
In a typical CDMA communication system, remote units only sporadically establish bi-directional communication with a base station. For example, a cellular telephone remains idle for significant periods of time when no call is in process. To ensure that any message directed to a remote unit is received, the remote unit must continuously monitor the communication channel even while it is idle. For example, while idle, the remote unit monitors the forward link channel from the base station to detect incoming calls. During such idle periods, the cellular telephone continues to consume power to sustain the elements necessary to monitor for signals from the base stations. Many remote units are portable and are powered by an internal battery. For example, personal communication system (PCS) handsets are almost exclusively battery-powered. The consumption of battery resources by the remote unit in idle mode decreases the battery resources available to the remote unit when a call is placed or received. Therefore, it is desirable to minimize power consumption in a remote unit in the idle state and thereby increase battery life.
One means of reducing remote unit power consumption in a communication system is disclosed in U.S. Pat. No. 5,392,287, entitled APPARATUS AND METHOD FOR REDUCING POWER CONSUMPTION IN A MOBILE COMMUNICATION RECEIVER (the '287 patent), assigned to the assignee of the present invention and hereby incorporated in its entirety herein by reference. In the '287 patent, a technique for reducing power consumption in a remote unit operating in an idle mode (i.e. a remote unit which is not engaged in bi-directional communication with a base station) is disclosed. In idle, each remote unit periodically enters an “active”state during which it prepares to and receives messages on a forward link communication channel. In the time period between successive active states, the remote unit enters an “inactive” state. During the remote unit's inactive state, the base station does not send any messages to that remote unit, although it may send messages to other remote units in the system that are in the active state.
As disclosed in the '287 patent, a base station broadcast messages which are received by all remote units within the base station coverage area on a “paging channel.” All idle remote units within the base station coverage area monitor the paging channel. The paging channel is divided in the time dimension into a continuous stream of “slots.” Each remote unit operating in slotted mode monitors only specific slots which have been assigned to it as active (assigned) slots. The paging channel continually transmits convolutional encoded messages in numbered slots, repeating the slot sequence, such as for example, every 640 slots. When a remote unit enters the coverage area of a base station, or if a remote unit is initially powered on, it communicates its presence to a preferred base station. Typically the preferred base station is the base station which has the strongest pilot signal as measured by the remote unit.
The preferred base station, along with a plurality of geographically near neighboring base stations, assign a slot, or a plurality of slots, within their respective paging channels, for the remote unit to monitor. The base station uses the slots in the paging channel to transmit control information to a remote unit, if necessary. The remote unit may also monitor a timing signal from the preferred base station allowing the remote unit to align, in the time dimension, to the base station slot timing. By aligning in the time dimension to the preferred base station slot timing, the remote unit can determine when a paging channel slot sequence begins. Thus, knowing when the paging channel slot sequence begins, which slots are assigned for it to monitor, the total number of slots in the repetitive paging channel sequence of slots, and the period of each slot, the remote unit is able to determine when its assigned slots occur.
Generally, the remote unit is in the inactive state while the base station is transmitting on the paging channel in slots which are not within the remote unit's assigned set. While in the inactive state, the remote unit does not monitor timing signals transmitted by the base station, maintaining slot timing using an internal clock source. Additionally, while in the inactive state the remote unit may remove power and/or clocks from selected circuitry, such as, for example, circuits which monitor the wireless channel and the decoder. Using its internal timing, the remote unit transits to its active state a short period of time before the next occurrence of an assigned slot.
In order for a message to be decoded with high reliability by the remote unit, the active state must include the time needed to reinitialize the receiver chain to provide valid receive samples, the time needed to search these samples for multipath and assign demodulation fingers to provide a valid symbol stream, and the time needed to initialize the state metrics with the symbol stream before the symbols associated with the messag
Brown Charles
Kordich Donald
Pezzlo John
Qualcomm Incorporated
Wadsworth Philip
LandOfFree
Symbol combiner synchronization after a jump to a new time... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Symbol combiner synchronization after a jump to a new time..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Symbol combiner synchronization after a jump to a new time... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3073260