Coded data generation or conversion – Bodily actuated code generator
Reexamination Certificate
2000-02-23
2003-04-29
Horabik, Michael (Department: 2635)
Coded data generation or conversion
Bodily actuated code generator
C345S175000, C345S176000, C250S227210, C250S227220, C074S4710XY
Reexamination Certificate
active
06556149
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to switches and control devices such as joy sticks, on/off switches and variable control switches. The invention further relates to control panels incorporating multiple switching devices. The invention further relates to switches, joysticks and the like wherein the user actuated movement of the device is detected by a pressure sensor, without the use of electrical contacts within the switching or control device and the corresponding information is relayed electronically to a central processing unit.
BACKGROUND OF THE PRIOR ART
The field of user actuated control means includes switches, joysticks and the like. Examples include 2-position on-off switches, multi position variable control switches (such as light dimmers), push button switches, multi position joysticks, and others. Such devices are characterized by a moveable member, which typically comprises a lever arm or push button actuated by a user, and a detector for detecting movement of the member. Within conventional on/off switches, a lever arm or toggle is associated with electrical contacts, wherein within a first position electrical contact is made, and when actuated by a user to a second position, electrical contact is broken. In an alternative arrangement, such as is found in joysticks and other like multi-position control means, a lever arm or the like is associated with a sensor for detecting the particular position of the arm. The arm may be mounted for sliding contact along a linear path (e.g. a light dimmer) or for movement on a 2 dimensional plane (e.g. a joystick). Conventionally such arrangements are similarly exemplified by various electrical contacts.
There is a need for switching and control units that incorporate a minimum of moving parts, are relatively inexpensive to fabricate and which do not rely on electrical contact in order to achieve a switching function. This results in less expensive and more reliable arrangement. In particular, such a need is experienced within the automotive industry, which uses a relatively large number of user-actuated switches and control means.
For example, within an automobile, switches and controls are generally found within the seat, door, steering wheel and front panel, for controlling a multitude of function and vehicle operations. Typically, pushing a switch sends an electrical detection signal via a supply wire to an actuator unit, possibly within a micro controller to perform the initiated function (see U.S. Pat. No. 4,809,180). These automotive switches are used to activate or deactivate circuits to perform certain functions (see U.S. Pat. No. 4,888,535).
The switches discussed above can be used in a variety of locations within a vehicle. Manipulator switches may be found on the side arm of a seat for altering its position and height. These switches are used to adjust certain features of the automobile according to the occupant's preferences. Similar switch panels may be found on the door armrest to activate power window and power mirror functions. Similar switch arrays may be found on the driver control console for activating many of the primary driving facilities in the car. A detection switch may also be used to detect current status of an automobile component, such as the open/closed status of a vehicle door. Related to this detection switch is the courtesy switch used to turn on a vehicle light when the car door is opened or trunk lid lifted or glove compartment opened. These switches include an actuating plunger which moves under spring pressure when spacings between a moveable and fixed lever increase. This type of lever or plunger is quite common in many switches (see U.S. Pat. No. 4,698,466).
Many occupant control switches are typically membrane switches. Membrane switches usually consists of a pair of parallel contact plates, possibly flexible electrodes, separated in the inoperative position due to the presence of a resilient element positioned between the two layers This resilient element could be a dielectric layer with a specific pattern defining opposing electrodes or an elastically yielding body filled between the plates. When a switch is touched or contacted, the two metal plates or electrodes make electrical contact, activating the proper response. Many membrane switches include an operating press member, acting on one metal plate, displacing the member into operative position (see U.S. Pat. Nos. 5,588,673, 5,743,386, 5,756,950 & 5,198,629).
Occupant controls such as a steering wheel, brake pedal and accelerator pedal may be fitted with simple switches to detect activation or with position sensing devices to detect the degree of actuation. Many brake pedals are comprised of a support bracket mounted to the firewall, brake pedal lever hinged thereto, resilient element urging brake pedal rearwardly and a switch located on either the support or lever. When these two members contact, due to the forward movement of the lever, the switch is activated, which connects the lever member to the brake system push rod (see U.S. Pat. No. 4,297,550). A number of such occupant control technologies have been cited in patent literature.
In addition to installing switches to ensure occupant comfort and pleasure, automobiles also include a suspension control apparatus that is used to provide a comfortable and stable ride. This apparatus counters change in the attitude of a vehicle, which may occur during braking, accelerating, turning and so on.
A suspension control apparatus generally consist of a fluid spring chamber, which is located between each road wheel and body of the vehicle, in addition to multitude of sensors. Sensors commonly implemented include vehicle height, speed, steering angle and acceleration sensors. Based on signals from these various sensors, the suspension control device regulates the amount of hydraulic fluid to be supplied to or discharged from the suspension systems (see U.S. Pat. Nos. 5,217,247; 4,887,840; 5,701,245; and 5,330,025).
User-actuated controls may be placed into two general categories. Within a first, a switch describes an on/off motion. Within a second, a range of positions is detected. For example, a conventional light dimmer or joystick would fall into the second category.
It is desirable within all such applications to provide a simple, accurate and reliable means for detection of position of a control arm.
It is proposed to provide a switch or control means that relies on a pressure sensor of the type described within PCT publication no. WO 99/04234. This type of pressure senor relies on a deformable integrating cavity for detecting a pressure applied to the cavity. Typically, the arrangement is comprised of a material such as translucent foam, which receives wave energy such as light from a source. A detector detects intensity of the light or other energy within the material. The sensor operates on the principle whereby the deformation of the material increases the light intensity in the region around the source. Thus, in the case where the source and detector are adjacent to each other or in the vicinity of each other, an increase in pressure on the material and consequent deformation in the region of the light source results in a consequent increase in the intensity of light detected by the detector. The resulting signal may be transmitted to a processing unit, which in turn quantifies the pressure experienced by the material. In one version, the light source and detector each comprise single or multiple fiber optic strands leading to and from the sensor. Within this arrangement, multiple sensors and detectors may be poisoned at different positions around the sensor mass, thereby detecting the location of pressure applied to the material. For example, a sheet of deformable material may be underlain with a planar array of light emitter/detector pairs, which detect and localize deformation of a particular portion of the sheet.
This principle is particularly advantageous for use with switches and the like, since the position of a user-moveable arm may be detected
Inkster Robert
Reimer Ernest M.
Canpolar East Inc.
Horabik Michael
McFadden Fincham
Wong Albert K.
LandOfFree
Switches and joysticks using a non-electrical deformable... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Switches and joysticks using a non-electrical deformable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Switches and joysticks using a non-electrical deformable... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3015661