Electrical pulse counters – pulse dividers – or shift registers: c – Systems – Pulse multiplication or division
Reexamination Certificate
2002-09-24
2004-07-06
Wambach, Margaret R. (Department: 2816)
Electrical pulse counters, pulse dividers, or shift registers: c
Systems
Pulse multiplication or division
C377S048000
Reexamination Certificate
active
06760398
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention concerns a switched phase dual-modulus prescaler circuit having means for reducing power consumption. The dual-modulus prescaler or divider counter circuit forms part of a frequency synthesiser. Said circuit divides the frequency of at least a high frequency signal by a factor N in a first selected mode and by a factor N+M in a second selected mode. It includes several series connected dividers-by-two of the asynchronous type. One of these dividers-by-two is of the master-slave type for receiving two input signals in phase opposition and for supplying four signals phase shifted by 90° in relation to each other. The circuit also includes a phase selector unit inserted between two of the dividers-by-two for receiving the four phased shifted signals of the first master-slave divider and for supplying one of the four phase shifted signals selected at the second divider. Two selection branches of the selector unit each receive two of the four phase shifted signals. A selection element of the selector unit is connected to each branch to provide at the output of said unit one of the four phase shifted signals selected in a division period determined as a function of the mode selected. For the selection of the phase-shifted signals, first control signals are provided by a control unit to the two branches, as well as to the selection element.
Frequency synthesisers are used particularly in wireless communication systems or, more generally, in telecommunication systems, in order to supply high frequency signals. The high frequency signals are likely to be used, for example, for demodulating RF signals received.
FIG. 1
shows an embodiment of a conventional frequency synthesiser with a dual-modulus prescaler circuit. This synthesiser includes first of all a reference oscillator, which is not shown. This oscillator supplies a frequency stable reference signal Fref to a phase and frequency detector
2
. This detector also receives a divided frequency signal Fdiv from a dual-modulus prescaler circuit
5
in order to compare the reference signal and the divided frequency signal. As a function of the phase and frequency difference in signals Fref and Fdiv, the detector supplies a comparison signal to a low-pass filter
3
connected to a voltage controlled oscillator (VCO)
4
. This voltage controlled oscillator receives a voltage control signal originating from the low-pass filter so that the oscillator generates at least a high frequency signal dependant on the comparison between signals Fref and Fdiv.
The voltage controlled oscillator can be a differential type oscillator so as to provide two high frequency signals Fs and Fsb in phase opposition to prescaler circuit
5
in a phase lock loop. At least one of high frequency signals Fs or Fsb can thus be used for demodulating operations in a radio-frequency signal receiver for example.
Dual-modulus prescaler circuit
5
has the power to allow frequency division by a division factor dependent on a selected mode. In order to do this, a logic circuit with two counters A and B is generally used to supply a mode selection to the prescaler circuit. This logic circuit
6
, well known in this technical field, is controlled by a microprocessor and by divided frequency signal Fdiv. The two counters A and B are, in theory, clocked in synchronism by a same clock signal, but the number counted by each counter before zero reset is different. This thus allows logic circuit
6
to supply a mode signal to the prescaler circuit so as to change division mode in determined periods.
Several embodiments of dual-modulus type prescaler circuits have already been proposed, but since these circuits have to operate at high speed, they are more difficult to design than simple fixed division ratio frequency dividers. One of the difficulties is that, to obtain a frequency division in accordance with the first and second division factors, the logic part of the circuit slows down the whole circuit.
A conventional dual-modulus prescaler circuit, having to operate at high speed, includes a first synchronous division part, for the division factor selection, and a second asynchronous part. In general, the first synchronous division part is the only part operating at the highest frequency. This can be a drawback, since several flip-flops of the first division part are synchronised by the same signal, which is a high frequency signal, which involves high current consumption.
U.S. Pat. No. 6,067,339 discloses such a dual-modulus prescaler circuit. The circuit allows frequency division to be carried out in accordance with two division factors as a function of a selected mode. For example according to the mode selected, the factor can be equal to 64 or 65, or also to 128 or 130. This circuit includes several dividers-by-two, connected in series, of which one divider unit is synchronous to carry out a division by 4 or by 5, whereas the other dividers are of the asynchronous type.
This synchronous divider unit is arranged with a certain number of logic parts in order to allow the circuit to divide the high frequency signal by one of the two division factors that is selected. The unit includes two D type flip-flops clocked by the same clock signal which is an output signal of a first divider-by-two. However, one of the flip-flops of this unit is only used to obtain the division factor by 65 or by 130.
Usually, a synchronous divider unit of this type is intended to receive the high frequency signal directly. Thus, several flip-flops operate at high frequency, which is a drawback if one wishes to reduce the power consumption of such a prescaler circuit. One solution to this problem has been partially resolved by the circuit disclosed in U.S. Pat. No. 6,037,339, by placing a first divider-by-two of the asynchronous type before the synchronous divider unit. However, the first divider only divides the frequency of the high frequency signal by two, which means that the unit has to operate with a frequency that is still too high.
Another drawback with such a circuit arrangement is that the frequency division cannot be precisely adjusted in accordance with the two division factors, given that a first divider-by-two is particularly used for reducing the frequency of a high frequency signal. It is thus not possible to supply frequency divisions closer to each other.
In order to avoid the use of a synchronous divider unit, an embodiment of a dual-modulus prescaler circuit is presented in the article drafted by Messrs. Jan Craninckx and Michiel S. J. Steyaert, published in the IEEE integrated circuit journal, volume 31 of Jul. 7, 1996. This dual-modulus prescaler circuit includes only series connected dividers-by-two of the asynchronous type. This dual-modulus circuit thus includes a chain of seven asynchronous dividers-by-two interrupted by a phase selector unit to allow frequency division by 128 or 129. Only the first divider-by-two operates at the highest frequency, i.e. at the frequency of at least a received high frequency signal Fin.
A second divider-by-two of the master-slave type is connected to the first divider-by-two. This second master-slave divider is intended to supply four signals phase shifted by 90° in relation to each other to the phase selector unit on the basis of two phase-opposition signals supplied by the first divider. With respect to the first of the four signals supplied by the master-slave divider, the other signals are thus phase shifted by 90°, 180° and 270°. The selector unit includes two differential amplifiers for amplifying and selecting the four phase shifted signals, and selection means for supplying one of the four signals selected at output.
The selector unit is controlled by a logic control unit as a function of the mode selected. In a first selected mode, said circuit has to divide the frequency of the high frequency signals by a division factor equal to 128. In this case, for all the division periods, the selector unit selects only one of the four signals. In a second selected mode, said circuit has to divide th
Asulab S.A.
Sughrue & Mion, PLLC
Wambach Margaret R.
LandOfFree
Switched phase dual-modulus prescaler circuit having means... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Switched phase dual-modulus prescaler circuit having means..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Switched phase dual-modulus prescaler circuit having means... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3207771