Telephonic communications – With usage measurement – Call charge metering or monitoring
Reexamination Certificate
1998-02-06
2004-04-27
Kuntz, Curtis (Department: 2643)
Telephonic communications
With usage measurement
Call charge metering or monitoring
C379S133000
Reexamination Certificate
active
06728352
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Reservation of Copyright
The disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or patent disclosure as it appear in the publicly available U.S. Patent and Trademark Office patent files or records, but otherwise reserves all copyright rights whatsoever.
2. Field of the Invention
The present invention relates to systems and methods for monitoring the use and performance of telecommunications network resources. In another aspect, the present invention is related to subsystems interacting with digital and analog telecommunications switches to provide information useful for managing the capacity of telecommunications network resources.
3. Description of Background Information
Communications networks facilitate communication between various devices. Two major categories of communications networks generally include broadcast networks and switching networks. A switching network may have a number of switching nodes interconnecting various types of transmission links. Such transmission links may traverse various physical distances, serving as, for example, PBX lines, long-distance lines, local exchange carrier lines, foreign exchange lines, 800-WATS lines, and/or tie lines. The physical connection may be made with the use of a cable, e.g., twisted copper pair, fiber-optic cabling, two-wire open lines, or coaxial cable, or it may be wireless, e.g., using cellular technologies, satellite transmission systems, terrestrial microwave links, or radio links. One or more combinations of existing networking technologies may be used to transmit signals over transmission lines, such as T1, PCM-30, SONET, ISDN, frame relay, asynchronous transfer mode (ATM), DMS (Digital Multiplex System), EWSD, and PBX.
Some popular switches include Nortel's DMS 100, Lucent's 5ESS, Siemens' EWSD, Lucent's 1AESS, and Nortel's Meridan PBX switches. These switches may be used to form circuit-switched networks, packet-switched networks, or hybrid combinations of the same. Switching technologies such as frame relay, ATM (asynchronous transfer mode), ISDN and broadband ISDN may all be accommodated by these switch types as well.
Many different network information management (NIM) systems collect traffic-related data concerning the capacity, use and performance of the various links, link components, switches, switch components, and other network resources forming a given network.
Some such NIM systems perform measurements on network resources (e.g., trunk groups, switching modules, line units, and so on) to obtain traffic-related data (e.g., peg count, overflow/blockage and usage information) associated with each such network resource.
Generally, NIM systems obtain information concerning congestion and its causes so that system administrators or users may assess whether certain network resources or groups of network resources are over-dimensioned, under-dimensioned, and/or improperly arranged or provisioned. Traffic-related data concerning actual use and performance of network resources can be provided, and forecast data can be extrapolated therefrom, to supply the data necessary to provide new network resources and/or to reconfigure or extend existing network resources.
Some conventional systems include the Lucent EADAS data collector and certain downstream operational support systems (e.g., NTMOS) which use data collected by the EADAS data collector to carry out certain operations system support functions.
Yet other NIM systems capture traffic-related data concerning network resources (e.g., trunks) between switches. One such system is described at Applied Digital Access's Web Site (ADA's) (www.ada.com). The system is called the Traffic Data Collection and Engineering operations system (TDC&E). It is described as a service assurance package for switched networks which supports all major traffic engineering functions, including equipment servicing, trunk forecasting, load balancing, toll separations, marketing studies, and service level exceptions.
According to their Web Site (www.hekimian.com), Hekimian Laboratories, Inc. provides a PM (performance monitor) Integrator System which collects and analyzes PM data from network elements (NEs)throughout the network. Users can request lists, graphs, and reports to check the state of the network. Technicians may review these presentations on a daily basis to determine if the service quality level of a circuit is satisfactory, and can look for trends to see if a circuit's performance is declining over time or experiencing intermittent errors.
Objective System Integrators in its web site (www.osi.com) describes a product called traffic-MASTER™. The product is said to be a fully automated, real-time traffic management and traffic management data collection and reporting tool that addresses the information needs related to switch performance and network traffic. The stated benefits of using traffic-MASTER™ include increased call completions, immediate response to network failures, and preservation of greater service levels during network failures and high-traffic situations.
Bear Creek Technologies has a family of network information management products.
The TrafficWise® NIM products directly interact with individual switches to initiate traffic engineering studies, analyze the produced data, and automatically produce traffic-related reports. Other systems have required manual operations and complex training to administer and configure multiple switches in order to perform traffic studies. Each study would take on the order of six to nine weeks to order, receive and view traffic engineering and customer service studies. Such studies were manually submitted, and members of the network operation staff would spend many hours checking for errors before initiating the study at the switch. This required the manual tracking of switch registers assigned to gather traffic-related data. In some cases, studies would be stopped early or left up too long, leaving switch registers unavailable for additional studies.
FIG. 1
provides a high level block diagram of the TrafficWise® Regional Reporting System, Version 3.0.
The illustrated system
10
comprises, among other elements, a user work station
12
connected in tandem to a web server
14
and a switch server
16
. A plurality of switches
18
a
-
18
c
are each coupled to switch server
16
via a switch network (not shown). The switch network may comprise, e.g., an Ethernet network, or a DataKit type connection. Client software is provided on the user work station
12
, and intranet web server software is provided on web server
14
. Software residing on switch server
16
enables traffic data to flow from each such switch to switch server
16
and web server
14
.
Switch server
16
will establish communication with the appropriate switch based upon a CLLI (Common Language Location Identifier—a switch identifying value) specified by the user at user work station
12
and provided to switch server
16
via web server
14
.
The user will interface with the system via user work station
12
and click a “new order” button in a tool bar. The user will then specify information regarding the study to be requested including a switch identifier (switch CLLI), the facility type, the OM group, period of time over which the study will be performed, the traffic study model (e.g., Poisson or Erlang C), and the facility name.
Once the data is entered, the system will verify that the switch CLLI is valid and that the OM group name is in the correct format. Once a new study is successfully entered and saved, it will appear in a studies field. Once all of the customer data and the studies are entered to the satisfaction of the system user, a submit button may be triggered which will send the order to web server
14
. Web server
14
then instructs switch server
16
to communicate with the appropriate switch based upon the input CLLI value. Switch
Blackmon Tim M.
Grabbe Glenn E.
Guthrie Marc A.
Muthukrishnan Prakash K.
Phillips David R.
Barnie Rexford
Bear Creek Technologies, Inc.
Kuntz Curtis
Miele Anthony L.
Palmer & Dodge LLP
LandOfFree
Switch interaction subsystems for facilitating network... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Switch interaction subsystems for facilitating network..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Switch interaction subsystems for facilitating network... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3245376