Swash plate type compressor of variable capacity type

Pumps – Condition responsive control of drive transmission or pump... – Adjustable cam or linkage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C092S073000

Reexamination Certificate

active

06508633

ABSTRACT:

This application is based on Japanese Patent Application No. 2000-183159 filed Jun. 19, 2000, the contents of which are incorporated hereinto by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates in general to a swash plate type compressor of variable capacity type, and more particularly to a technique for assuring stable behavior of the swash plate which is rotated during operation of the compressor.
2. Discussion of the Related Art
One example of a swash plate type compressor of variable capacity type is disclosed in JP-A-7-91366. The compressor disclosed in the publication comprises (a) a housing having a plurality of cylinder bores formed therein such that the cylinder bores are equiangularly arranged along a circle whose center lies on a centerline of the housing; (b) a rotary drive shaft which is rotatably supported by the housing such that an axis of rotation of the rotary drive shaft is aligned with the centerline of the housing; (c) a swash plate which is carried by the rotary drive shaft such that an angle of inclination of the swash plate with respect to a plane perpendicular to the axis of rotation of the rotary drive shaft is variable, and such that the swash plate is rotated together with the rotary drive shaft; (d) a plurality of pistons which are slidably fitted in the respective cylinder bores and which engage a radially outer portion of the swash plate, each piston being reciprocated between a compression stroke end and a suction stroke end during rotation of the swash plate; and (e) a swash plate angle adjusting device for adjusting the angle of inclination of the swash plate between a maximum inclination angle and a minimum inclination angle.
The compressor further comprises an engaging protrusion which extends from a body portion of the swash plate at an angle with respect to the centerline of the body portion. The engaging protrusion has at its free end a spherical portion which is held in engagement with an engaging hole formed in a rotary member fixed to the rotary drive shaft. The swash plate has a central through-hole formed through the thickness at its central portion. The rotary drive shaft extends through the through-hole for supporting the swash plate. The configuration of the through-hole permits a tilting motion of the swash plate between a perpendicular posture in which the swash plate is perpendicular to the rotation axis of the rotary drive shaft and an inclined posture in which the swash plate is inclined by a predetermined angle with respect to the rotation axis, namely, a rotary motion of the swash plate for changing its inclination angle.
While the swash plate which is inclined with respect to the rotation axis of the rotary drive shaft is rotated, the plurality of pistons which engage the radially outer portion of the swash plate are reciprocated within the respective cylinder bores, for thereby changing the volume of the pressurizing chamber which is defined by the end face of each piston and the inner surface of the cylinder bore. Described more specifically, the volume of the pressurizing chamber is increased during a suction stroke of the piston in which a gas is sucked into the pressurizing chamber, while the volume of the pressurizing chamber is decreased during a compression stroke of the piston in which the gas is compressed. The volume of the pressurizing chamber is minimum when the piston is at its compression stroke end, and the volume of the pressurizing chamber is maximum when the piston is at its suction stroke end. The radially outer portion of the swash plate includes a compression-end circumferential part which engages each piston when each piston is at its compression stroke end, and a suction-end circumferential part which engages each piston when each piston is at its suction stroke end. Since the body portion of the swash plate generally has a circular shape, the compression-end circumferential part and the suction-end circumferential part of the swash plate are opposite to each other diametrically of the rotary drive shaft. While the swash plate which is inclined by a predetermined angle is rotated for reciprocating each piston, the swash plate receives at one of its opposite inclined surfaces the reaction force from the piston which is at its compression stroke. In this case, owing to the effect of the inclined surface, a force acts on the swash plate in a direction from its suction-end circumferential part toward the compression-end circumferential part. Accordingly, the swash plate is rotated together with the rotary drive shaft while a circumferential portion of the inner circumferential surface of the central through-hole of the swash plate, which circumferential portion is on the side of the suction-end circumferential part of the swash plate, is held in pressing contact with the corresponding circumferential portion of the outer circumferential surface of the rotary drive shaft. The above-indicated circumferential portion of the inner circumferential surface of the thorough-hole on the side of the suction-end circumferential part of the swash plate is hereinafter referred to as “suction-end-side inner circumferential surface” of the through-hole.
Where the swash plate is rotated while it is placed in the substantially perpendicular posture relative to the rotation axis of the rotary drive shaft, the positions of the piston at its compression stroke end and suction stroke end in the axial direction of the rotary drive shaft are substantially identical with each other, causing substantially no change in the volume of the pressurizing chamber. Since the compression of the gas is not substantially effected in this state, the reaction force acting on the swash plate from the piston is substantially zero. In addition, the opposite surfaces of the swash plate which receive the reaction force of the piston are perpendicular to the rotation axis, in the substantially perpendicular posture of the swash plate. Accordingly, the above-indicated force acting on the swash plate owing to the effect of the inclined surface in the direction from the suction-end circumferential part toward the compression-end circumferential part of the swash plate is substantially zero or considerably small. It is, however, desirable that the suction-end-side inner circumferential surface of the through-hole of the swash plate is kept in pressing contact with the outer circumferential surface of the drive shaft by the force acting on the swash plate in the direction from its suction-end circumferential part toward the compression-end circumferential part. If the circumferential portion of the inner circumferential surface of the through-hole of the swash plate on the side of its compression-end circumferential part (hereinafter referred to as a “compression-end-side inner circumferential surface” of the through-hole) were held in pressing contact with the outer circumferential surface of the rotary drive shaft, the swash plate would be moved in its radial direction from its suction-end circumferential part toward the compression-end circumferential part during its tilting motion to increase the inclination angle. This movement causes undesirable butting noise due to a butting contact of the suction-end-side inner circumferential surface of the through-hole of the swash plate with the rotary drive shaft. Further, since the volume of the pressurizing chamber is abruptly changed due to the above-described movement of the swash plate, the discharge capacity of the compressor is also abruptly changed. To avoid these undesirable phenomena, it is preferable that the suction-end-side inner circumferential surface of the through-hole of the swash plate is always kept in pressing contact with the outer circumferential surface of the rotary drive shaft, irrespective of the inclination angle of the swash plate.
SUMMARY OF THE INVENTION
For permitting the swash plate to receive the force acting thereon in the direction from its suction-end circumferential part toward the compression-end circumferential part even

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Swash plate type compressor of variable capacity type does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Swash plate type compressor of variable capacity type, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Swash plate type compressor of variable capacity type will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3032155

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.