Drug – bio-affecting and body treating compositions – Baits – attractants – or lures
Reexamination Certificate
1999-02-01
2002-03-12
Page, Thurman K. (Department: 1615)
Drug, bio-affecting and body treating compositions
Baits, attractants, or lures
C424S405000, C424S409000, C424S412000
Reexamination Certificate
active
06355236
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is related to a sustained release pheromone formation to be used in a so-called mating disruption method, that is, a method for controlling pest insects by releasing the sex pheromone of the pest insects over the field, thereby disrupting their mating.
2. Description of the Related Art
Controlling pest insects by disruption of mating is carried out by releasing the artificially synthesized sex pheromone of the target pest insects in the air and disturbing the communication between males and females to decrease a mating ratio, thereby controlling the appearance of the next generation. The sustained release formation of a sex pheromone is required to have a performance permitting the stable release of the sex pheromone during the generation stage of pest insects. The release of sustained release pheromone formation is controlled at a predetermined rate for a long time by putting the formation with one or more components of the sex pheromone or geometric isomer thereof in a plastic container and then permeating the mixture through the plastic film of the container.
The sex pheromone of pest insects such as
Chilo suppressalis, Helicoverpa assulata
and
Helicoverpa armigera
is an aliphatic aldehyde compound having 10 to 18 carbon atoms. Using the above-described sustained release formation, the release rate decreases because the aldehyde compounds easily undergo degradation such as oxidation, polymerization or the like. As a countermeasure against it, a stabilizer such as antioxidant or polymerization inhibitor is added. The antioxidant or polymerization inhibitor is effective for stabilizing the liquid of the formation in a plastic container, but exhibits no effects for the aldehyde compound once permeated from the container. The aldehyde compound permeated from the container undergoes polymerization reaction on the outer surface of the container and forms a polymer layer, which markedly decreases the release rate of the aldehyde compound from the container. It is therefore necessary to install the sustained release formations plural times during the control term of pest insects, which inevitably increases the application labor.
SUMMARY OF THE INVENTION
As a solution to these problems, the present invention has been completed. An object of the present invention is to provide a sustained release pheromone formation comprising an aldehyde compound, which formation is capable of preventing the degradation of the aldehyde compound, thereby releasing the aldehyde compound at an uniformed rate during the control term of pest insects.
The sustained release pheromone formation of the present invention which has been completed with a view to attaining the above-described object is obtained by filling, in a plastic container, a liquid mixture of a sex pheromone which is in the liquid form and is a C
10-18
aldehyde and an aliphatic derivative of which number of carbon atoms is equal to or less than that of the aldehyde.
To sustained release pheromone formation according to the present invention is applicable to the disruption of mating of any insects that have at least a sex pheromone which is a C
10-18
aldehyde. Examples of the insects to which the sustained release pheromone formation of the present invention is applicable include Chilo, Choristoneura, Helicoverpa, Heliothis, Parapediasia, Plutella and Platyptilia genera. The formation is particularly useful for the control of
Chilo suppressalis, Choristoneura fumiferana, Helicoverpa assulta, Helicoverpa armigera, Heliothis virescens, Heliothis zea, Parapediasia teterrella, Plutella xylostella
and
Platyptilia carduidactyla.
The present invention can be carried out suitably by using, as the aliphatic derivative, an aliphatic acetate of which number of carbon atoms is less than that of the aldehyde by 2 to 4, an aliphatic alcohol of which number of carbon atoms is less than that of the aldehyde by 2 to 6 or an aliphatic carboxylate ester of which number of carbon atoms is equal to or less than that of the aldehyde by 1 to 4. Since each of the above-described aliphatic derivatives has physical properties, such as film permeability and vapor pressure, similar to the aldehyde, it is released and evaporated from the formation together with the aldehyde, which prevents the retention of the aldehyde on the surface of the formation. In addition, the aliphatic derivative prevents the degradataion of the aldehyde, because it is mixed at a proper concentration in the formation.
As the aliphatic derivative, usable is one or more than one aliphatic derivatives selected from the following (i) to (iii):
(i) an aliphatic acetate of which number of carbon atoms is less than that of the sex pheromone substance by 2 to 4,
(ii) an aliphatic alcohol of which number of carbon atoms is less than that of the sex pheromone substance by 2 to 6, and
(iii) an aliphatic carboxylate ester of which number of carbon atoms is equal or less than that of the sex pheromone substance by 1 to 4.
Examples of the aliphatic acetate of which number of carbon atoms is less than that of the sex pheromone substance by 2 to 4 include aliphatic acetates having a linear, branched or cyclic alkyl or alkylene group having 6 to 16 carbon atoms, particularly 10 to 16 carbon atoms. Among them, the aliphatic acetates having a linear alkyl or alkylene group are preferred.
Examples of the linear, branched or cyclic alkyl group having 6 to 16 carbon atoms include hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, methylpentyl, methylhexyl, methylheptyl, methyloctyl, methylnonyl, methyldecyl, methylundecyl, methyldodecyl, methyltridecyl, methyltetradecyl, methylpentadecyl, ethylbutyl, ethylpentyl, ethylheptyl, ethyloctyl, ethylnonyl, ethyldecyl, ethylundecyl, ethyldodecyl, ethyltridecyl, ethyltetradecyl, dimethylbutyl, dimethylpentyl, dimethylheptyl, deimthyloctyl, dimethylnonyl, dimethyldecyl, dimethylundecyl, dimethyldodecyl, dimethyltridecyl, dimethyltetradecyl, propylpentyl, propylhexyl, propylheptyl, propyloctyl, propylnonyl, propyldecyl, propylundecyl, propyltridecyl, ethylmethylpentyl, ethylmethylhexyl, ethylmethylheptyl, ethylmethyloctyl, ethylmethylnonyl, ethylmethyldecyl, ethylmethylundecyl, ethylmethyldodecyl, ethylmethyltridecyl, diethylpentyl, diethylhexyl, diethylheptyl, diethylnonyl, diethyldecyl, diethylundecyl, diethyldodecyl and cyclohexadecyl groups.
Examples of the linear, branched or cyclic alkylene group having 6 to 16 carbon atoms include hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, methylpentenyl, methylhexenyl, methylheptenyl, methyloctenyl, methylnonenyl, methyldecenyl, methylundecenyl, methyldodecenyl, methyltridecenyl, methyletetradenecyl, methylpentadecenyl, ethylbutenyl, ethylpentenyl, ethylheptenyl, ethyloctenyl, ethylnonenyl, ethyldecenyl, ethylundecenyl, ethyldodecenyl, ethyltridecenyl, ethyltetradecenyl, dimethylbutenyl, dimethylpentenyl, dimethylheptenyl, dimethyloctenyl, dimethylnonenyl, dimethyldecenyl, dimethylundecenyl, dimethyldodecenyl, dimethyltridecenyl, dimethyltetradecenyl, propylpentenyl, propylhexenyl, propylheptenyl, propyloctenyl, propylnonenyl, propyldecenyl, popylundecenyl, propyltridecenyl, ethylmethylpentenyl, ethylmethylhexenyl, ethylmethylheptenyl, ethylmethyloctenyl, ethylmethylnonenyl, ethylmethyldecenyl, ethylmethylundecenyl, ethyl methyldodecenyl, ethyl methyltridecenyl, diethylnonenyl, diethyldecenyl, diethylundecenyl, diethyldodecenyl, hexadienyl, heptadienyl, octadienyl, nonadienyl, decadienyl, undecadienyl, dodecadienyl, tridecadienyl, tetradecadienyl, pentadecadienyl, hexadecadienyl, methylpentadienyl, methylhexadienyl, methylheptadienyl, methyloctadienyl, methylnonadienyl, methyldecadienyl, methylundecadienyl, methyldodecadienyl, methyltridecadienyl, methyltetradecadienyl, methylpentadecadienyl, ethylbutadienyl, ethylpentadienyl, ethylheptadienyl, ethylocatadienyl, ethylnonadienyl, ethyldecadienyl, ethylundecadienyl, ethyldodec
Ishino Tatsuya
Saguchi Ryuichi
Burns Doane Swecker & Mathis L.L.P.
Channavajjala Lakshmi S.
Page Thurman K.
Shin-Etsu Chemical Co. , Ltd.
LandOfFree
Sustained release pheromone formation does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sustained release pheromone formation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sustained release pheromone formation will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2848608