Sustained release dosage form unit having latex coating and...

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Tablets – lozenges – or pills

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S464000, C424S475000, C424S468000

Reexamination Certificate

active

06620434

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a coating system for sustained release of a beneficial agent from a dosage form, and particularly to a dosage form unit having a latex coating for sustained release of a beneficial agent such as a marker dye into a liquid enteral nutritional product. The invention further relates to a method of making and using the sustained release dosage form unit.
BACKGROUND OF THE INVENTION
A variety of devices and methods are known for the enteral, parenteral or oral delivery of beneficial agents, such as nutrients, medicaments, probiotics, diagnostic agents and marker dyes, to a patient. For example, it is well known to feed a fluid, such as a liquid enteral nutritional product, by gravitational or positive flow from a hangable bottle or bag having an outlet connected to a drip chamber which, in turn, is connected to a flexible tubing or lumen leading to a nasogastric tube or a feeding tube inserted through a gastrostomy or a jejunostomy to a patient. The liquid enteral nutritional product may be aseptically processed or terminally retorted, and may be supplied in a pre-filled, ready-to-hang container, or placed in such a container by a caregiver. However, the selection of diets, particularly special diets, from amongst the rather modest number of typically available liquid enteral nutritional products that are currently available is rather limited.
Moreover, it is often desirable to administer simultaneously a variety of beneficial agents, such as nutrients, medicaments, probiotics, diagnostic agents and marker dyes. These various ingredients, however, often are not stable during heat sterilization and may not be mutually compatible with other desired ingredients for an extended period of time, such as days or even months until used. As such, the combination of these beneficial agents are not readily amenable to large scale preparation and consequent storage as the product moves through commerce.
It also is beneficial to make the liquid enteral nutritional product more detectable in a patient after delivery, such as for diagnostic purposes and to identify when the enteral nutritional product is improperly fed to an area external to the stomach or intestines. One such method of making the liquid enteral nutritional product more detectable is to dissolve a suitable physiologically acceptable marker dye into the liquid product. Because compatibility of such marker dyes with other beneficial agents must be considered, it is advisable not to introduce the marker dye prior to heat sterilization or extended storage.
For these reasons, it therefore has been desirable to alter, modify or mark nutritional products during enteral tube feeding into the gastrointestinal tract of a patient. Certain new apparatus and methods have been developed to address these needs, and are the subject of several recent patents, including U.S. Pat. No. 5,531,681, U.S. Pat. No. 5,531,682, U.S. Pat. No. 5,531,734, U.S. Pat. No. 5,533,973, U.S. Pat. No. 5,549,550, U.S. Pat. No. 5,738,651, U.S. Pat. No. 5,741,243, U.S. Pat. No. 5,746,715, U.S. Pat. No. 5,755,688, and U.S. Pat. No. 5,755,689. Generally, these patents are directed to various aspects of apparatus and methods, which use a formulation chamber joined in fluid communication with a feeding device, and a dosage form unit placed within the formulation chamber. The dosage form unit contains the desired beneficial agents to be added to the liquid enteral nutritional product. As noted by the identified patents, a variety of dosage form units are available for use with these apparatus and methods, including conventional osmotically-driven delivery devices for sustained delivery of a beneficial agent.
One such osmotic delivery device is disclosed in U.S. Pat. No. 5,318,558, which is directed to a pump-type, controlled-release dosage form unit, or delivery device. Generally, the device includes a cylindrical enclosure containing the beneficial agent at one end portion and a piston driven by an osmotic engine at the other end portion. A small orifice is formed in the enclosure, preferably by a laser beam drill, at the end opposite the osmotic engine. In this manner, the beneficial agent is forced from the enclosure through the orifice upon activation of the osmotic piston.
An alternative osmotic dosage system with a sustained release dosage is disclosed by U.S. Pat. No. 5,324,280, wherein the beneficial agent is enclosed within an inner wall surrounded by a layer of hydro-active material that is entirely confined within an outer wall. Osmotic pressure resulting from expansion of the hydro-active material forces the beneficial agent out through a passageway formed in the outer wall by a laser drill or the like.
As noted, each of these conventional osmotic drug delivery devices requires that an orifice or similar passage be drilled or otherwise preformed in an outer membrane. Such precision manufacturing techniques, however, can be both difficult and expensive to perform. Additionally, it has been found that such conventional osmotic drug delivery devices are not particularly efficient, especially when used for the delivery of a marker dye or the like.
Furthermore, it is often desirable to provide an immediate release of beneficial agent upon initial exposure to the liquid enteral nutritional product. To accomplish this immediate release, conventional osmotic delivery systems typically require that an outer layer or film of the desired beneficial agent be provided. In this manner, an initial amount of the beneficial agent can be released quickly upon dispersion within the liquid nutritional product, followed by a sustained release of the beneficial agent from the dosage form unit. The provision of an additional outer film of beneficial agent, however, increases the manufacturing and material costs of the drug delivery device.
As such, there remains a need for an improved dosage form unit capable of sustained delivery of the beneficial agent(s) contained therein.
SUMMARY OF THE INVENTION
The purpose and advantages of the present invention will be set forth in and apparent from the description that follows, as well as will be learned by practice of the invention. Additional advantages of the invention will be realized and attained by the methods and systems particularly pointed out in the written description and claims hereof, as well as from the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described, the invention includes a dosage form unit to deliver a beneficial agent into a fluid. Particularly, and as embodied herein, an intended use of the dosage form unit is for delivering one or more beneficial agents into a liquid enteral nutritional product to be fed to the gastrointestinal tract of a patient.
The dosage form unit of the invention includes a core containing at least one beneficial agent, which is dispersible in a fluid, such as liquid enteral nutritional product. As embodied herein, the beneficial agent is selected from a group consisting of nutrients, medicaments, probiotics, diagnostic agents and, in the preferred embodiment, marker dyes. Particularly, F.D.& C. Blue Dye #1 and methyl anthranilate are two such preferred markers.
The core also contains a compatible binding agent to bind the beneficial agent together. Although a variety of binding agents may be used, cellulose acetate is preferred. In the preferred embodiment, a plasticizer or cold solvent such as triacetin is used to soften the cellulose acetate and thus enhance binding to establish a stronger core. If desired or necessary, a conventional lubricant and a standard flow agent also can be provided for construction of the core. Other known tableting aids also may be used, such as dicalcium phosphate, to enhance the core construction. The core embodied herein also includes at lease one hydrophilic agent, such as hydroxypropyl methylcellulose, and one or more osmotically effective compounds if desired, to create an osmotic system for delivery of the beneficial age

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sustained release dosage form unit having latex coating and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sustained release dosage form unit having latex coating and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sustained release dosage form unit having latex coating and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3100504

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.