Sustained release delivery system

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Matrices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S484000, C424S486000, C424S485000

Reexamination Certificate

active

06335035

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of the Invention
This invention relates to the preparation of a sustained release delivery system, and more particularly to a system using a polymer matrix containing a drug. The system is designed to administer effective levels of drugs over a sustained period of time when administered intramuscularly, epidurally or subcutaneously for the treatment of various disease states conditions. A particularly advantageous use of the system is the administration of a local anesthetic along the sheath of a nerve or muscle tissue to alleviate or ameliorate the effects of pain.
2. Description of the Prior Art
Medications have been formulated to enable the administration of drugs to occur over a wide variety of paths, including instantaneous delivery by use of injectables, and sustained, controlled and extended release delivery by use of tablets, capsules, and particulate forms which enable release of the drug to be controlled by various means, such as by resistance of the structure's coating or composition against diffusion of the drug therethrough. These systems have all found wide applications for the delivery of drugs.
None of the known drug delivery systems, however, are able to administer effective therapeutic amounts of a drug for sustained periods of time, that is, longer than 24 to 48 hours. Actually, most delivery systems maintain effective dosages for from several hours to daily doses before requiring readministration. Such systems have not been found to be effective for the long term administration of drugs that require repetitive and continued use, except of course for selected patch treatments. Drugs that have been repeatedly administered for long term treatments include but are not limited to anesthetics for treating pain, steroids and hormone administration for maintenance, modification or alteration of body chemistry, metabolism and hormone balance and regulation, vitamin and mineral supplementation, and so forth. A delivery system is therefore needed which would permit the administration of therapeutically effective amounts of drugs to enable a continued and sustained release for at least 24 hours to several days.
SUMMARY OF THE INVENTION
The present invention relates to the formation of a long-acting drug composition for use in treating acute, or chronic conditions. More particularly, this invention relates to a sterilized, purified, solubilized or suspended drug composition, which comprises: a drug dispersed within a polymer matrix solubilized or suspended in a polymer matrix, with or without the presence of a preservative. The polymer matrix is composed of a highly negative charged polymer material selected from the group consisting of polysulfated glucosoglycans, glycosaminoglycans, mucopolysaccharides and mixtures thereof, and a nonionic polymer selected from the group consisting of carboxymethylcellulose sodium, hydroxyethyl cellulose, hydroxypropyl cellulose, and mixtures thereof.
Another embodiment of this invention involves a method for the treatment of a condition in animals, which comprises injecting therapeutically effective dosages of a suspension or solution of a sterilized, purified, solubilized or suspended composition comprising a drug dispersed within a polymer matrix which is solubilized or suspended in a liquid medium. Preferably, one of the polymer materials has a mean average molecular weight below about 800,000, and the other polymer is a nonionic cellulose derivative.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to the formation of a delivery system for administering a drug for a sustained period, and particularly to a polymer matrix useful for its treatment of acute, or chronic intractable pain and to the use therefor. The process involves the production and use of specialized compounds manufactured by using polymers of molecular weights below about 800,000 in a unique process for the creation of specially modified molecules to treat a variety of conditions. Specifically, the invention addresses a process for manufacturing a polymer matrix suspended or solubilized in water with various drugs. The polymers must be sterilizable and acceptable for animal, and human use. In this way, a suitable polymer system is formed as a matrix which is able to disperse a much lower molecular weight drug to form a solution or suspension of the active for subsequent use.
It has been found in conventional drug treatments that once a therapeutic dosage is used, the beneficial effect of such dosage routine wears off within several hours of its initial application, thus requiring repetitive treatment. This mechanism is common in all animal systems and involves biochemical pathways that have not yet been fully discovered or identified. One possibility for this action would involve the animals own immunoglobin system which may be responsible for identifying the presence of the chemical entity and systematically destroying it. Another may be the inherent instability of the chemical entity after its administration into the animal.
It has been unexpectedly discovered that an effective therapeutic level of a drug may be administered once over at least a 24 hour to several day interval when the drug is suspended or entrapped in a specially designed polymer matrix containing almost equal molar ratios of a negatively charged polymer and a nonionic polymer suspended or dissolved in water.
This system is believed to form a matrix which microencapsulates, suspends and/or entraps the active drug entity such that when it is administered it is slowly released into the systemic circulatory system or muscular tissue providing a sustained and prolonged drug release rate.
The molar ratio of the polymers present in the matrix is critical in this invention. It has been found that molar ratios of the negatively charged polymer to the nonionic polymer must be from 1:0.5 to 2 and preferably from 1:0.8 to 1.5 and most preferably from 1:1 to 1.2. At ratios either higher or lower than these levels the resulting systems tend to sheer when being prepared and form unacceptable air pockets and bubbles. Furthermore, the solutions tend to separate and form distinct polymer layers.
At least one of the polymers used to form the matrix of this invention must be sufficiently negatively charged to aid in the dispersion, encapsulation or solubilization of the drug. Particularly preferred polymers have mean average molecular weights below about 800,000 and preferably molecular weights between about 500,000 to 800,000 have been found acceptable to form useable polymer matrixes. Polymers with mean average molecular weights between about 700,000 and 775,000 are most preferred. Polymers having molecular weights above about 800,000 form solid gels in solution and are unable to serve in an injectable system. Furthermore, the polymers must be sterilizable and be stable during sterilization so that the polymer does not lose molecular weight once formulated into the final injectable form
Exemplary, non-limiting examples of compounds that may be used as a source of this molecular weight polymer include polysulfated glucosoglycans, glucosaminoglycans, and mucopolysaccharides, derivatives thereof and mixtures thereof. Particularly preferred mucopcolysaccharides are chondroitin sulfate and hyaluronic acid salts with sodium hyaluronate being most preferred.
Hyaluronic acid (HA) occurs naturally in joint synovial fluid, where it plays a lubricating role, and may have biological activity as well. HA is a mucopolysaccharide, and may alternatively be referred to as a glycosaminoglycan. The repeating unit of the hyaluronic acid molecule is a disaccharide consisting of D-glucuronic acid and N-acetyl-D-glucosamine. Because hyaluronic acid possesses a negative charge at neutral pH, it is soluble in water, where it forms highly viscous solutions. The D-glucuronic acid unit and N-acetyl-D-glucosamine unit are bonded through a glycosidic, beta (1-3) linkage, while each disaccharide unit is bonded to the next disaccharide unit through a beta (1-5) linkage. The (beta 1-4) li

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sustained release delivery system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sustained release delivery system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sustained release delivery system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2837941

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.