Sustained-release composition including amorphous polymer

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Particulate form

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S423000, C424S426000, C424S427000, C424S434000, C424S435000, C514S772300, C514S781000, C514S937000, C514S951000

Reexamination Certificate

active

06613358

ABSTRACT:

FIELD OF THE INVENTION
The present invention concerns a highly amorphous sustained-release composition for sustained release of a pharmaceutical substance; an antisolvent precipitation method for making the composition: products made using the composition: and uses of the composition.
BACKGROUND OF THE INVENTION
Pharmaceutical substances may be introduced into a human or animal host for therapeutic or curative purposes in a number of ways. In many pharmaceutical applications, the pharmaceutical substance is administered in the form of solid particles. For example, a micropump may be used in some applications for prolonged treatment by slowly injecting a suspension of small particles in a liquid. Also, small particles having both a pharmaceutical substance and a biodegradable polymer may be placed within issue for sustained release of the pharmaceutical substance, with the biodegradable polymer acting to control the release of the pharmaceutical substance. Furthermore, in pulmonary delivery applications, small particles may be inhaled to lodge in tissue of the lungs, permitting the pharmaceutical substance to then enter the circulatory system or to be released for local treatment
Often, however, problems are encountered in attempting to make particles having the desired properties for a particular pharmaceutical application. For example, when particles having a biodegradable polymer and a pharmaceutical substance are prepared, the pharmaceutical substance often concentrates near the surface of the particles. This effect may cause a sudden, undesirable release of the pharmaceutical substance when it is initially introduced into the host. Also, when using a micropump for continuous injection of a suspension over a prolonged period, the solid particles tend to settle over time, which may cause an undesirable variation in the rate of delivery of the pharmaceutical substance.
With respect to pulmonary delivery applications, current methods for delivering the pharmaceutical substance in small particles typically result in a majority of the pharmaceutical substance being wasted. In one method, called nebulization, a liquid having the pharmaceutical substance in solution is sprayed at a high velocity and inhaled. Alternatively, nebulization may involve spraying a powder as fine particles propelled by a carrier gas, with the particles being inhaled. Particles administered by both these nebulization methods. However, may have a wide distributor of droplet or particle sizes, resulting in a very low utilization of the pharmaceutical substance. Particles, or droplets, which are too large tend to lodge in the throat and mouth during inhalation and are not, therefore, effective for delivering the pharmaceutical substance to the lungs. Particles, or droplets, which are too small tend not to impact on the lung tissue, but rather tend to be exhaled. As much as 80 to 90 percent or more, of the pharmaceutical substance may, therefore, be wasted and only a small portion of the pharmaceutical substance which is administered may actually reach the desired target in the lung.
Many of these problems with delivery of particles of a pharmaceutical substance result from limitations on methods used to make the particles. One method for making particles of a pharmaceutical substance, called lyophilization, involves rapid freezing of the pharmaceutical substance with water, followed by rapid dehydration of the frozen material to produce dry particles of the pharmaceutical substance. This technique has been used with proteins and other polypeptides, but the low temperatures involved may reduce the biological activity of some polypeptide molecules. Also, the particles produced by lyophilization tend to be large and clumping and are often not suitable for pharmaceutical delivery methods which require smaller particles. It is possible to grind the lyophilized particles to produce smaller particles, but such grinding may damage some pharmaceutical substances, especially proteins. Also, even when a substance may be ground without significant damage to the activity of the substance, it is difficult to obtain a pharmaceutical powder having particles of a narrow size distribution. Therefore, such pharmaceutical powders are prone to substantial waste of the pharmaceutical substance, such as described above for pulmonary delivery applications.
One method which has been proposed for making small particles of a pharmaceutical substance is called gas antisolvent precipitation. In this method, a pharmaceutical substance is dissolved in an organic solvent which is then sprayed into an antisolvent fluid, such as carbon dioxide, under supercritical conditions. The antisolvent fluid rapidly invades spray droplets, causing precipitation of very small pharmaceutical particles.
The gas antisolvent precipitation technique, however, requires that the pharmaceutical substance be soluble in the organic solvent. For hydrophobic pharmaceutical substances, this generally presents no problem because those substances can readily be dissolved in relatively mild, non-polar organic solvents. Hydrophilic pharmaceutical substances, however, are substantially insoluble in such relatively mild organic solvents.
It has been proposed that insulin, a hydrophilic protein, may be processed in a gas antisolvent precipitation process by dissolving the insulin in dimethylsulfoxide (DMSO) or N,N-dimethylformamide (DMF), both of which are strong, highly polar solvents. One problem with such a process, however, is that highly polar solvents such as DMSO and DMF tend to unfold protein molecules from their native tertiary structure, or conformation. These protein molecules would, therefore, also be precipitated in an unfolded state for incorporation into the solid particles. Such unfolding could seriously reduce the biological activity of a protein or other polypeptide, especially if stored as a solid particle in the unfolded state for any appreciable time.
There is a need for improved methods for making solid particles of pharmaceutical substances, and especially for making particles of hydrophilic substances, to permit preparation of particles having an appropriate size and size distribution without the molecular unfolding associated with the gas antisolvent precipitation method and without the low temperatures and grinding associated with lyophilization.
Despite intense efforts in the field of gene therapy, there is still a lack of well-defined delivery vehicles that will allow efficient and effective delivery of an oligonucleatide-based therapeutic agent. Much of the work in this area has centered on the use of cationic lipids. The ability of cationic lipids to interact with membranes, to increase the lipophilicity of polynucleotides, and to mask the significant negative charge on polynucleotides, appears to be essential to achieving a high degree of transfection of the targeted cell. However, there remains a need in the art for more effective ways of achieving transfections
It has been reported that cationic surfactants can be used to conjugate nucleic acids to enzymes and to purify nucleic acids. See U.S. Pat. Nos. 4,873,187 and 5,010,183. In particular, the latter patent teaches that the cationic surfactants and nucleic acids form hydrophobic complexes that can be dissolved or dispersed in polar solvents for purification of the nucleic acids.
However, currently existing cationic surfactants tend to be toxic and not suitable for pharmaceutical use or other uses where cell survival is important. Therefore, a need exists for new cationic surfactants that are less toxic than the existing cationic surfactants and which can be used in situations where cell survival is important.
Furthermore, the morphology of the particles may detrimentally effect performance. For example, M. Mayajim et al, Effect of Polymer Crystallinity on Paperverine Release from Poly(l-lactic acid) Matrix, describe a problem encountered with amorphous poly(l-lactic acid) in sustained-release compositions. The amorphous polymer had an undesirable tendency to crystallize during drug rele

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sustained-release composition including amorphous polymer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sustained-release composition including amorphous polymer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sustained-release composition including amorphous polymer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3080443

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.