Suspensions and methods for deposition of luminescent...

Chemistry: electrical and wave energy – Processes and products – Electrophoresis or electro-osmosis processes and electrolyte...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S064000, C427S157000

Reexamination Certificate

active

06171464

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed to suspensions of luminescent materials (e.g., phosphors) and to methods for depositing layers of these materials, particularly during the preparation of display devices, such as field emission display devices, and the articles produced thereby.
BACKGROUND OF THE INVENTION
Display devices, such as desk-top computer screens and direct view and projection television sets, include electron excited cathodoluminescent display devices such as cathode ray tubes. Cathode ray tubes (CRTs) function as a result of a scanning electron beam from an electron gun impinging on phosphors on a relatively distant glass screen. The phosphors absorb the energy from the electron beam and subsequently emit a portion of the energy, which is typically in the visible region of the electromagnetic spectrum. This visible emission is then transmitted through the glass screen to the viewer. Other display devices, such as field emission displays for use in flat panel display screens, which include cold cathode emission devices, and vacuum fluorescent displays for use in handheld calculators, which include hot cathode emission devices, also function as a result of electrons exciting phosphors on a screen.
Phosphors are inorganic or organic luminescent materials that may include “activator” atoms that can modify the emitted radiation, such that the emission is in the visible region, as well as modify the emission intensity and the persistence of the image. Phosphors should preferably be capable of maintaining luminescence (e.g., fluorescence) under excitation for a relatively long period of time (e.g., about 5 milliseconds) to provide superior image reproduction. Also, in general, it is desirable to produce highly pure phosphors to increase absorption of the available excitation energy by the activator that emits the required radiation, rather than being consumed by other impurities or “killer” centers, which would result in lower luminescence and lower efficiency. Therefore, the quality of the deposited phosphor is an important parameter.
Typically, in field emission displays, powder electroluminescent cells, and other electroluminescent articles, the phosphor is deposited on an insulating substrate coated with a transparent, conductive material such as of indium tin oxide (ITO). A method for producing deposits of phosphors (typically, separate tracks of red, green, and blue phosphors) is electrophoresis (i.e., electrophoretic deposition). In electrophoresis, phosphor particles are deposited from a suspension under the action of an electric field. The suspension typically includes a nonaqueous liquid, such as an alcohol, and an electrolyte, such as a salt of yttrium, aluminum, lanthanum, or thorium. Such metal salts make it possible to electrically charge the phosphor particles and serve as a binder making it possible to obtain a highly adhesive coating. The part coated can serve either as the anode (anaphoresis) or cathode (cataphoresis).
Certain electrophoretic deposition methods result in nonreproducible and inhomogeneous phosphor layers. Others result in the underlying coating (e.g., indium tin oxide) losing its transparency or otherwise being deteriorated as by discoloration and reduced conductivity. U.S. Pat. No. 5,536,383 (Van Danh et al.) discloses a method that avoids these problems; however, this method uses a suspension that includes an aliphatic alcohol (except methanol), a powdered luminescent material, a metal salt, as well as other organic materials such as nitromethane and a vegetable protein. The metal salts can be salts of rare earth and alkaline earth metals. They can also be thorium, aluminum and/or cobalt salts. Preferably, they are hydrated nitrate salts of Mg, La, Al, Th, and Co.
There is a need for other electrophoretic deposition methods that are simpler and substantially eliminate the deterioration (e.g., discoloration and reduced conductivity) of the transparent, conductive coating.
SUMMARY OF THE INVENTION
The present invention provides suspensions and methods for depositing luminescent materials by electrophoresis: Thus, in one embodiment, the invention is directed to a suspension for the deposition of a luminescent layer onto a substrate having thereon a metal-containing transparent, conductive coating, the suspension comprising a nonaqueous liquid, a luminescent material, and a salt of a metal of the transparent, conductive coating.
In another embodiment of the invention, a suspension is provided for the deposition of a luminescent layer onto a substrate having thereon a metal-containing transparent, conductive coating comprising indium tin oxide, the suspension comprising, a polar organic liquid, a dielectric phosphor, and a salt of a metal of the transparent, conductive coating.
In yet another embodiment of the invention, a method for depositing a luminescent layer on a substrate having thereon a metal-containing transparent, conductive coating is provided. The method includes: providing a suspension comprising a nonaqueous liquid, a luminescent material, and a salt of a metal of the transparent conductive coating; and depositing (i.e., coating) the suspension onto the substrate to form a layer of luminescent material.
Another method for depositing a luminescent layer on a substrate having thereon a metal-containing transparent, conductive coating comprising indium tin oxide is provided. The method includes: providing a suspension comprising, a polar organic liquid, a dielectric phosphor, and a salt of a metal of the transparent, conductive coating; and depositing the suspension onto the substrate to form a layer of luminescent material.
The present invention also provides coated substrates and field emission display devices. In one embodiment, a field emission display device comprises a substrate having thereon a metal-containing transparent, conductive coating, and further having deposited thereon a luminescent material, and an oxide of a metal of the transparent, conductive coating.
In another embodiment, a field emission display device comprises a substrate having thereon a metal-containing transparent, conductive coating comprising indium tin oxide, and further having deposited thereon; a dielectric phosphor, and an oxide of a metal of the transparent, conductive coating.
Also provided is a substrate comprising a metal-containing transparent, conductive coating on at least one surface of the substrate, and a layer of luminescent material deposited on the metal-containing transparent, conductive coating, wherein the layer of luminescent material comprises an oxide of a metal of the transparent, conductive coating.
In another embodiment, a substrate is provided that comprises a metal-containing transparent, conductive coating on at least one surface of the substrate, and a layer of dielectric phosphor deposited on the metal-containing transparent, conductive coating, wherein the layer of dielectric phosphor comprises an oxide of a metal of the transparent, conductive coating.
Yet another embodiment provides a substrate comprising a metal-containing transparent, conductive coating on at least one surface of the substrate, and a layer of luminescent material deposited on the metal-containing transparent, conductive coating, wherein the metal-containing transparent conductive coating comprises indium tin oxide and the layer of luminescent material comprises an oxide of a metal of the transparent, conductive coating.


REFERENCES:
patent: 5210472 (1993-05-01), Casper et al.
patent: 5372973 (1994-12-01), Doan et al.
patent: 5378962 (1995-01-01), Gray et al.
patent: 5531880 (1996-07-01), Xie et al.
patent: 5536383 (1996-07-01), Van Dahn et al.
patent: 5577943 (1996-11-01), Vickers et al.
patent: 5635048 (1997-06-01), Lu et al.
patent: 5853554 (1998-12-01), Bojkov et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Suspensions and methods for deposition of luminescent... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Suspensions and methods for deposition of luminescent..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Suspensions and methods for deposition of luminescent... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2449610

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.