Survival mask

Surgery – Respiratory method or device – Means for removing substance from respiratory gas

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S201250, C128S201280, C128S205270, C128S205280, C128S098100, C128S206120, C128S206150, C128S206240, C128S206250

Reexamination Certificate

active

06543450

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to survival masks for use in hazardous environments for protecting persons against the dangers of smoke and toxic gases, and more particularly, to a simple, lightweight and easily deployable mask designed for use by an individual within a hazardous environment such as a fire in emergency escape situations.
2. Description of Related Art
It is well known that toxic gases, inhaled by individuals, cause many fatalities in fire related emergencies. The loss of life and property resulting from fires in the United States and Canada occurs at twice the rate at which it occurs elsewhere in the developed world. Two-thirds of all fatal fires occur in single or two family homes. In addition to the 5,000 victims who perish annually in these fires, another 300,000 are hospitalized for prolonged medical and surgical care of their burns.
When occupants of a structure on fire are exposed to the fire byproducts, the first hazard encountered is usually smoke containing particulates and toxic gases which cause immediate visual degradation, obscuration, tearing and painful irritation of the eyes as well as the respiratory tract. This may be followed quickly by incapacitation due to pain, severe visual impairment and asphyxia as exposure continues. Fires burning in highly combustible structures tend to develop rapidly and the time available for escape is often limited to a few minutes before conditions become lethal due to the effects of toxic smoke and heat, so that survival depends on rapid egress. Visual obscuration and severe smoke irritation are important during the early stages in that they may reduce visibility and hence, the speed and efficiency of escape. People have been shown to be reluctant to enter smoke filled areas even if such areas are between them and the exit, and it has been found that movement is greatly reduced under these conditions. Once certain synthetic materials within the structure become heavily involved in combustion, the concentration of toxic gases, such as CO and hydrogen cyanide (HCN) increase rapidly throughout the structure causing rapid incapacitation of the occupants. Accordingly, the most significant problems encountered by occupants of a burning structure include the inhalation of toxic gases and the blinding effect of smoke.
Furthermore, fire and smoke related fatalities are frequently encountered during aircraft crashes, wherein the aircraft does not totally disintegrate upon impact. Many, if not all of the passengers, initially survive such low impact crashes only to find themselves engulfed in the resulting fire and smoke.
The National Transportation Safety Board has summarized the sequence of events in a commercial airline crash wherein the aircraft encounters a relatively low impact “belly-landing” as follows. Initially, the aircraft skids along the ground, causing fuel lines in the lower fuselage of the aircraft to be severed resulting in a fine mist spray of jet fuel into the baggage compartment. Typically, one of the wings impacts the ground-rupturing wing mounted fuel tanks resulting in additional spray of jet fuel. The jet fuel and associated vapor is typically ignited by a spark generated by the skidding aircraft resulting in a fireball which envelopes the fuselage. Within 30 to 60 seconds of the initial impact, the aircraft typically comes to a full stop with the fuselage generally level and intact. The flames enveloping the aircraft begin to melt the acrylic polymer windows and starts burning through the fuselage.
During the next minute, that is within approximately 60 to 120 seconds of the initial impact, a portion of the aircraft's interior is ablaze, and the cabin begins to fill with a dense, black, caustic smoke. The major identifiable gases which result in passenger incapacitation following combustion of the cabin interior materials include carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HFl), hydrogen chloride (HCL), nitrous oxides (NO
x
), sulfur dioxide (SO
2
), ammonia (NH
3
), acrolein (C—C—) and other hydro carbon compounds. The smoke and poisonous gases incapacitate the weak and elderly almost immediately and the remaining passengers shortly thereafter. Passengers who are still conscious blindly attempt to crawl toward an exit, which, quite typically, is not visible. Within approximately two minutes from the initial impact the cabin becomes a smoke filled inferno, and all passengers remaining in it are asphyxiated by smoke, poisoned by toxic gases or otherwise incapacitated.
There are indications that a substantial number of passengers in low impact aircraft crashes could be saved. Studies have shown that between 1969 and 1983, over 60% of the fatalities in such crashes were caused by suffocation due to the inhalation of toxic fumes, rather than by impact. Between 1985 and 1991 about sixteen percent (16%) of all United States transport aircraft accidents (thirty two (32) accidents) involved fire and twenty two percent (22%) of all fatalities (144 fatalities) resulted from fire/smoke toxicity. Laboratory analysis of post-mortem blood samples for the time period from 1967 through 1993 indicate that 360 individuals in 134 fatal fire related civil aircraft accidents had carboxyl hemoglobin saturation levels greater than or equal to 20%, with or without blood cyanide high enough to impair performance. A number of safety mask devices are known in the background art for use by persons in fire related emergencies. For example, U.S. Pat. No. 4,231,118, issued to Nakagawa, discloses a head and face-protecting hood. U.S. Pat. No. 4,466,432, issued to Wise, discloses an air-supplying hood which requires an external air supply to provide breathable air to the user. U.S. Pat. No. 4,793,342, issued to Haber et al., discloses an emergency smoke hood and breathing mask having an activated charcoal filter for removing smoke and/or toxic gases. U.S. Pat. No. 5,113,854, issued to Dosch et al., discloses a quick-donning protective hood assembly having a built-in oxygen generator. U.S. Pat. Nos. 5,186,165 and 5,315,987, issued to Swann, each disclose a filtering canister with deployable hood and mouthpiece, wherein the filtering canister includes various layered filtering material including activated carbon granules, a desiccant, a catalyst for the catalyzation of carbon monoxide to carbon dioxide and/or lithium peroxide for conversion of CO
2
to O
2
, and electrostatically charged filters between the layers of filtering medium. U.S. Pat. No. 5,526,804, issued to Ottestad, discloses a complex self-sufficient emergency breathing device. U.S. Pat. No. 5,690,095, issued to Glynn et al., discloses an emergency escape breathing apparatus requiring a source of respirable gas.
The devices of the background art, however, do not disclose a simple, lightweight, easily deployable mask designed for use in modern fires. For example, U.S. Pat. No. 2,665,686 issued to Wood discloses a rather large device which is neither compact or flexible, and thus not well suited for storage within small storage compartments, handbags or carry-on luggage. In addition, it has been found that people, particularly when in distress, are reluctant to completely cover their heads with hooded devices.
Hoods of the prior art are bulky, cumbersome to put on, require up to five minutes to do so, contain huge amounts of dead space (the space occupied by a women's hair style, for example), are difficult to seal around the neck and contain as part of the apparatus a canister for filtration and an exogenous supply of O
2
. Hoods are for trained personnel, i.e., flight attendants, firemen, paramedics, rescue personnel, with responsible roles to play in emergency fire situations and long durations of exposure anticipated in carrying out those responsibilities.
Conversely, the mask of the present invention is specifically designed to provide the frightened lay person trapped in these awful environments with something they can use easily and will provide them with clear vision, clean breath

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Survival mask does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Survival mask, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Survival mask will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3059237

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.