Surgical lighting system with integrated digital video camera

Television – Special applications – Observation of or from a specific location

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C348S077000, C600S249000, C362S233000

Reexamination Certificate

active

06633328

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention is directed to the art of surgical videography and, more particularly, to a method and apparatus for displaying and recording live videographic images of a surgical procedure from the vantage point of a digital camera disposed within an overhead surgical lighthead. The present invention will be described with particular reference surgical videography but it should be understood that the invention has broader applications and uses such as in the theater arts, industrial processes, or anywhere there is a need for the real time display or recording of an image taken from a digital camera disposed within a lighting apparatus.
In nearly all medical surgical procedures, highly specialized apparatus are used to provide filtered light known as “cold” light. The devices are engineered to illuminate surgical fields without heating the biological material under the light. Typically, surgical lighting apparatus of this type include one or more lightheads that are suspended from a corresponding set of interconnected articulated arms for supporting the lightheads in multiple positions relative to the surgical field. One common form of surgical lighting equipment includes a ceiling mounted support system that is used to suspend a pair of substantially circular lightheads from arms that are manually movable into place as needed before or during a surgical procedure. The lightheads are normally spaced from the floor well above the heads of the surgeon and other operating room personnel and therefore offer an excellent vantage point from which to observe the medical procedure as it is being performed.
In certain surgical procedures, it is desirable to record the entire surgical session for use afterwards as a teaching tool or in defense of medical malpractice lawsuits, or the like. Another reason video cameras have been used during surgical procedures is to provide a real time monitor of the procedure to one or more shifts of surgical team members that have a need to observe the status of the procedure in advance of the point at which their respective tasks are to be performed in turn. Oftentimes, one or more remote monitors are used in separate waiting or prep rooms so that the various surgical teams can independently observe the ongoing procedure and take whatever steps are necessary to prepare themselves for their turn at the patient.
One commercial attempt to provide live videographic images of a surgical procedure as it is performed is provided by Berchtold Corporation in the form of their ChromoVision™ surgical camera system. Basically, the Berchtold offering includes a digitally processed camera that is disposed within the handle of a surgical lighthead. The lighthead supporting the camera is an otherwise standard cold light unit and, as such, is suspended from overhead by multiple pivotally connected arm segments. The distal end of each arm segment includes a fork-like member that is rotatably connected to the arm segment on one end and is connected to opposite sides of the lighthead on the other end.
In the Berchtold system described above, although the multiple pivotable support arms enable full 360° rotation of the lighthead, the camera disposed within the handle of the lighthead can only be rotated 300°. To do so, the surgeon or circulating nurse must reach overhead and manually adjust the camera by rotating the lighthead handle until the desired picture orientation is obtained. That is, the camera is only manually rotatable. Normally, the lighthead handle is sterile and, accordingly, only sterilized personnel can effect picture orientation adjustments.
In order to adjust the field of view of the digitally processed camera in the Berchtold system, a motor driven zoom lens is provided to enable video images of the surgical procedure from a wide angle or close-up range. The motorized lens is connected to a control box that receives zoom commands from either push buttons on the face of the control box or an optional foot pedal switch disposed on the floor of the surgical room adjacent the patient table.
One major disadvantage of the above video system is that the camera cannot be rotated a full 360°, as noted above. This makes it difficult to properly orient the camera to provide understandable video images. Upside down images could lead to surgeon confusion and cause accidental missteps that might injure the patient.
Another disadvantage of the prior art system described above is that the footswitch cannot be used to effect video image rotation.
Yet another disadvantage of the above prior art system is that at least two people are required to operate the system, namely, a first person to rotate the lighthead handle to properly orient the camera and a second person to operate the footswitch or control box to adjust the zoom lens of the camera.
It would therefore be desirable to provide a surgical videographic system having a surgical lighthead with an integrated digital video camera that can provide fully motorized 360° image rotation and that is easier to operate and less awkward than the system described above.
It would further be desirable to provide a fully motorized surgical video system that can be operated by fewer people than the system described above to reduce operating room overhead.
SUMMARY OF THE INVENTION
In accordance with the present invention, a surgical video system is provided for capturing an image of a surgical procedure and displaying the image on a video monitor remote from the surgical procedure. The video system includes at least one surgical lighthead adapted to generate a light beam and direct the light beam towards the surgical procedure. A video camera is integrated into the at least one surgical lighthead. The video camera generates an electronic image signal representative of the surgical procedure for display on a video monitor operatively connected to-the video camera. The video camera is adapted to modify the signal displayed on the monitor in response to a first command signal to selectively rotate the image of the surgical procedure displayed on the video monitor. Together with the surgical lighthead-and the video monitor and camera, the video system includes a control unit operatively connected to the video camera for generating the first command signal in response to an input signal from an operatively associated external source.
In accordance with an aspect of the invention, the video camera is a digital video camera adapted to generate a digital electronic image signal representative of the surgical procedure for display on the video monitor. The digital video camera is adapted to physically rotate independent of the surgical lighthead in response to the first command signal to rotate the image of the surgical procedure displayed on the video monitor.
In accordance with another aspect of the invention, the digital video camera is adapted to physically rotate at least 360° within the surgical lighthead relative to the first command signal to rotate the image of the surgical procedure displayed on the video monitor at least 360°.
In accordance with still yet another aspect of the invention, at least a one of a footswitch, a manual keypad, and a remote transmitter is in operative communication with the control unit for generating the input signal used by the control unit to generate the first command signal causing the digital video camera to rotate the image of the surgical procedure displayed on the video monitor.
Still yet further in accordance with the invention, the digital video camera is carried on a rotatable motorized frame supported within the surgical lighthead. An electric gear motor is drivingly associated with the rotatable frame. As the drive motor rotates, the frame and digital video camera carried thereon rotate as well. An electric slip ring connector electromechanically connects a first set of digital video signal wires from the digital video camera to a second set of digital video signal wires routed through the surgical lighthead toward the control unit so that rotation of the d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surgical lighting system with integrated digital video camera does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surgical lighting system with integrated digital video camera, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surgical lighting system with integrated digital video camera will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3153200

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.