Surgical knot pusher and method of use

Surgery – Instruments – Suture – ligature – elastic band or clip applier

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S144000, C606S145000

Reexamination Certificate

active

06258106

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a device to facilitate the tying of surgical sutures at remote sites within the body during endoscopic surgery and other minimally invasive surgical procedures. A method for tying surgical knots in a suture at intracorporeal positions during minimally invasive surgery is also presented.
2. Background Art
Minimally invasive surgical techniques have emerged as an important trend within the field of surgery. Minimally invasive surgery differs from standard open surgery in that surgical procedures are performed through small incisions in the body under the guidance of endoscopy, fluoroscopy, ultrasound or other remote imaging techniques. Minimally invasive surgical techniques reduce the morbidity of surgical procedures, accelerate patient recovery and, in many cases, also reduce the overall cost of surgery, especially by shortening the recovery period during which patients must stay in the hospital.
Due to such benefits, many established surgical procedures, such as arthoscopic knee surgery and gall bladder removal, have been converted from open surgical techniques to minimally invasive surgical techniques. Minimally invasive surgery includes laparoscopic, endoscopic and orthoscopic surgeries. In performing laparoscopic surgery, for example, procedures are performed in the abdominal cavity by making a small incision through several layers of tissue, which may include the outer layer of skin called the epidermis, a layer of fat beneath the epidermis, a layer of abdominal muscle tissue beneath the fat layer and the lining of the abdominal cavity called the peritoneum. A trocar is inserted through the incision and medical instruments are introduced into the abdominal cavity therethrough. The surgeon performs procedures inside the cavity by manipulating the medical instruments from outside the patient while viewing the manipulations using a closed circuit monitor connected to an imaging device called a laparoscope that is inserted into the cavity. By using such equipment and procedures, laparoscopic surgery generally results in less trauma to the patient and, consequently, a more rapid recovery than with conventional open surgery. Similar advantages apply to other forms of minimally invasive surgery.
One of the great challenges facing minimally invasive surgery is the advancement of minimally invasive surgical techniques into the area of cardiac surgery. Certain cardiac surgery procedures that previously were only possible through open chest surgery have already been converted to minimally invasive surgical techniques. For example, catheter techniques have been developed for occlusion of patent material septal defects and for valvuloplasty of stenotic aortic or mitral valves. Instruments and techniques have also been developed for endoscopic approaches to the heart, allowing more complex cardiac surgical procedures, for example, the replacement of a stenotic or insufficient mitral valve, to be performed through minimally invasive surgical techniques.
One of the important challenges in minimally invasive surgical techniques is that of placing sutures in the tissue at the operating site and applying properly tied suture knots through the narrow access of an endoscopic cannula or other equally restrictive access passage. Two different approaches are commonly used in tying sutures in endoscopic surgery. These can be classified generally as intracorporeal knot tying techniques, for tying sutures at the surgical site within the body, and extracorporeal knot tying techniques, which allow knots to be tied in the sutures outside of the body, then transferred to the surgical site using a knot pusher.
Intracorporeal knot tying can be performed using endoscopic graspers or forceps to manipulate the sutures in a technique similar to instrumented knot tying in conventional surgery. Alternatively, specialized intracorporeal knot tiers can be used.
Various intracorporeal knot tiers are shown in U.S. Pat. No. 5,234,443 to Phan et al., U.S. Pat. No. 4,641,652 to Hutterer et al. and U.S. Pat. No. 5,281,236 to Bagnato et al. Tying sutures using a grasper or an intracorporeal knot tier is difficult and tedious compared with standard bimanual methods of surgical knot tying. Using intracorporeal knot tiers usually requires specialized training in operating the instrument and, even in the hands of the most skilled operators, usually requires more time than standard knot tying techniques. In procedures where few knots have to be tied, where access to the surgical site is difficult, or where the length of the procedure is not critical, intracorporeal knot is the likely method of choice.
However, for the surgical replacement of a diseased mitral valve using closed chest surgical procedures, the complexity and time consumption of using intracorporeal knot tying techniques can endanger the patient since the rate of post-surgical complications in cardiac procedures rises in proportion to the length of time that the patient must spend on cardiopulmonary bypass. The time spent using intracorporeal knot techniques in a surgical procedure, such as mitral valve replacement, that can involve tying a multitude of individual multiple-throw suture knots, with up to four (4) or more throws per suture, unnecessarily endangers the patient. Due to the proportional increase in patient risk, it is important to keep the duration of the procedure as short as possible and avoid any unnecessary delays.
Therefore, in time sensitive procedures, it is best to take advantage of an experienced surgeon's practiced and well honed bimanual surgical knot tying skill, rather than to require the surgeon to use complex intracorporeal knot tying techniques. Some knot pushers are designed specifically to take advantage of this prior skill by allowing the surgeon to form the suture knots extracorporeally, then using the knot pusher to transfer the knots to the surgical site and tighten them in place. A well designed knot pusher allows the surgeon to use a knot tying technique that closely mimics the standard bimanual knot tying technique and does not add undue complication to the procedure.
A common type of surgical knot pusher is made with a C-shaped loop on the distal end of an elongated shaft, as exemplified in U.S. Pat. No. 3,871,379 to Clarke. The opening of the C faces distally from the shaft, and the opening is sized to pass the desired size of suture. These devices are used by first passing the suture through the tissue to be tied and bringing both ends of the suture out through the surgical entry point so that a knot can be tied extracorporeally. The C-shaped loop is then placed over the knot and is used to slide the knot down the suture to the surgical site. The knot may then be tightened by pulling on the suture ends. This type of knot pusher has several disadvantages. The knot pusher must be reloaded onto the suture thread each time another throw is added to the suture knot. This adds time and complexity to the tying technique. In many cases, the orientation of the C-shaped loop on the knot pusher prevents the knot from being pushed directly up to the tissue that is to be sutured. This can leave a bit of slack in the suture that would be a severe problem in valve replacement surgery because it could cause the replacement valve to loosen and potentially displace from its proper position in the heart or could lead to perivalvar leaks. The open gap of the C-shaped loop can accidentally drop the suture while pushing the knot down if it is not carefully handled. This can be very frustrating to the surgeon because the knot pusher will have to be rethreaded, which is much more difficult once the knot is halfway down the suture and within the body cavity. Also, the knot pusher has no means to insure that the knot remains centered on the knot pusher. The surgeon must carefully maintain equal tension on both ends of the suture or the knot will slide sideways out of the C-shaped loop. While this type of knot pusher works well with monofilament sutures, it

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surgical knot pusher and method of use does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surgical knot pusher and method of use, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surgical knot pusher and method of use will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2538422

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.