Surgical instrument having a fastener delivery mechanism

Surgery – Instruments – Suture – ligature – elastic band or clip applier

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S143000, C606S151000

Reexamination Certificate

active

06572626

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates, in general, to a surgical instrument and, more particularly, to a surgical instrument having a feeding mechanism for feeding at least one surgical fastener from a surgical instrument to attach a prosthetic in the repair of a defect in tissue such as an inguinal hernia.
BACKGROUND OF THE INVENTION
An inguinal hernia is a condition where a small loop of bowel or intestine protrudes through a weak place or defect within the lower abdominal muscle wall or groin of a patient. This condition commonly occurs in humans, particularly males. Hernias of this type can be a congenital defect wherein the patient is born with this problem, or can be caused by straining or lifting heavy objects. Heavy lifting is known to create a large amount of stress upon the abdominal wall and can cause a rupture or tearing at a weak point of the abdominal muscle to create the defect or opening. In any case, the patient can be left with an unsightly bulge of intestinal tissue protruding through the defect, pain, reduced lifting abilities, and in some cases, impaction of the bowel, or possibly other complications if the flow of blood is cut off to the protruding tissue.
A common solution to this problem is surgery. In the surgical procedure, the defect is accessed and carefully examined, either through an open incision or endoscopically through an access port such as a trocar. In either case, the careful examination can be well appreciated, as a network of vessels and nerves exist in the area of a typical defect, which requires a surgeon to conduct a hernia repair with great skill and caution. Within this area are found vascular structures such as gastric vessels, the external iliac vessels, and the inferior epigastric vessels, and reproductive vessels such as the vas deferens extending through the inguinal floor.
Once the surgeon is familiar with the anatomy of a patient, the surgeon carefully pushes the bowel back into the patient's abdomen through the defect. Repairing the defect can involve closure of the defect with sutures or fasteners but generally involves placing a surgical prosthetic such as a mesh patch over the open defect, and attaching the mesh patch to the inguinal floor with conventional suture or with surgical fasteners. The mesh patch acts as a barrier and prevents expulsion of bowel through the defect. Suturing of the mesh patch to the inguinal floor is well suited to open procedures but much more difficult and time consuming with endoscopic procedures. With the adoption of endoscopic surgery, endoscopic surgical instruments that apply surgical fasteners are falling more and more into use. However, the tissue of the inguinal floor offers special challenges to the surgeon when a needle or fastener is used to penetrate structures such as Cooper's ligament.
At present, there are a variety of surgical instruments and fasteners available for the surgeon to use in an endoscopic or open procedure to attach the mesh patch to the inguinal floor. One of the earliest types of endoscopic surgical instruments used is a surgical stapler. A plurality or stack of these unformed staples are generally contained within a stapling cartridge in a serial fashion, and are sequentially advanced or fed within the instrument by a spring mechanism. A secondary valving or feeding mechanism is employed to separate the distal most staple from the stack, to hold the remainder of the spring loaded stack, and to feed the distal most stapler into the staple forming mechanism. Feeding mechanisms of this type are found in U.S. Pat. No. 5,470,010 by Robert Rothfuss et al. and in U.S. Pat. No. 5,582,616, also by Robert Rothfuss et al.
Another hernia mesh attachment instrument uses a helical wire fastener that resembles a small section of spring. Multiple helical wire fasteners are stored serially within the 5 mm shaft, and are corkscrewed or rotated into tissue. A load spring is used to bias or feed the plurality of helical fasteners distally within the shaft. A protrusion extends into the shaft to prevent the ejection of the stack of fasteners by the load spring and permits passage of a rotating fastener. Instruments and fasteners of these types are found in U.S. Pat. No. 5,582,616 by Lee Bolduc et al., U.S. Pat. No. 5,810,882 by Lee Bolduc et al., and in U.S. Pat. No. 5,830,221 by Jeffrey Stein et al.
Whereas the above surgical instruments are used for hernia fastening applications, they use a spring mechanism to feed a plurality of fasteners through the surgical instrument. Spring mechanisms typically use a long soft coil spring to push a stack of fasteners through a guide or track within the shaft of the surgical instrument. These types of feeding mechanisms are generally simple and reliable, but require an additional secondary valving mechanism or protrusion to separate and feed one fastener from the stack, while preventing the remainder of the stack of fasteners from shooting out of the instrument.
Other surgical fasteners are used for hernia mesh attachment but utilize either a reloadable single shot instrument or a rotary magazine that holds a small number of fasteners. These types of surgical fastening instruments can be found in U.S. Pat. No. 5,203,864 and U.S. Pat. No. 5,290,297, both by Edward Phillips. These instruments have not gained acceptance by the surgical community, possibly due to their single shot capabilities and the large size of the rotary magazine, which can restrict such an instrument to an open procedure.
Whereas all the above surgical instruments are used for hernia fastening applications, they either use a spring mechanism to feed the plurality of fasteners through the surgical instrument, or a rotary magazine in lieu of a feeding mechanism. Other types of surgical fasteners are available, such as surgical clips, and they can utilize feeding mechanisms that do not require the use of a spring to feed the clips distally. A reciprocating feeding mechanism is described in U.S. Pat. Nos. 5,601,573, 5,833,700, and 5,921,997 by Fogelberg et al. Fogelberg et al. teaches a clip applier with a feeding mechanism that utilizes a reciprocating feed bar to feed a serial stack of clips. A feeder shoe operably engages with and moves with the distally moving feed bar and slidingly engages with the proximally moving feed bar. Thus, the feeder shoe indexes or pushes the stack of clips distally with the distally moving feed bar and remains stationary relative to the proximally moving feed bar. A valving mechanism is also required to separate the distal most clip from the stack and to hold the stack stationary as the distal most clip is applied onto a vessel. Whereas Fogelberg et al. teaches a reciprocating feeding mechanism with a single reciprocating member, he does not teach the use of the clip applier in the attachment of hernia mesh, nor does he teach the individual driving or feeding of each clip by a moving member.
Another fastener feeding mechanism that uses a reciprocation is that disclosed in U.S. Pat. No. 4,325,376 by Klieman et al. A clip applier that stores a plurality of clips in a serial fashion within a clip magazine is disclosed. The clips are in a stack wherein the proximal most clip is pushed or fed distally by a pawl that is ratcheted or indexed distally by a reciprocating member or ratchet blade with each actuation of the instrument. As the pawl indexes distally, it pushes the stack of clips distally. A secondary valving mechanism is also described. Thus, the feeding mechanism of Klieman et al. teaches the use a single reciprocating member and pawl to push or feed the stack of clips distally, and requires a secondary valving mechanism to feed the distal most clip. Additionally, Klieman et al. and does not teach the use of the clips for the attachment of hernia mesh on tissue.
U.S. Pat. No. 3,740,994 by DeCarlo Jr. describes a novel reciprocating feeding mechanism that indexes a plurality of staples or clips, and readies them for discharge by reciprocating one of a pair of opposing leaf spring assemblies. The staples reside serially

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surgical instrument having a fastener delivery mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surgical instrument having a fastener delivery mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surgical instrument having a fastener delivery mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3138427

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.