Surgical instrument assembly for use in endoscopic surgery

Surgery – Endoscope – With particular operating handle design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S104000, C600S114000

Reexamination Certificate

active

06605036

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a surgical instrument assembly for use in endoscopic surgery, particularly endoscopic neurosurgery.
BACKGROUND OF THE INVENTION
Surgical instrument assemblies for use with rigid or flexible endoscopes are well known in biopsy procedures and certain types of endosurgery. A telescope portion of the endoscope is generally housed within a sleeve which also houses the shaft of a single surgical instrument. The sleeve and surgical instrument each has a proximal end and a distal end. The distal end of the surgical instrument is an operative end having an operative function. The operative end of the surgical instrument protrudes from the distal sleeve end into a field of view of the endoscope, and is controllable from the proximal end by the surgeon. Such assemblies have been widely used in relatively simple procedures where lateral to and fro manipulation of the operative end of the surgical instrument within the field of view is not required.
Systems permitting manipulation of a flexible distal end portion of a surgical instrument (e.g. a catheter or flexible surgical tool) in one lateral to and fro direction within the field of view are also known. Thus, for example, U.S. Pat. No. 2,038,394 (Wappler) describes a catheterising cystoscope, having the facility to deflect the distal end of a catheter inserted into a body cavity, within a field of view of an endoscope. British Patent Application No. 2004749 describes a modification of such a system, in which a proximal operating lever is provided to control a deflector at the distal end, which lever may be manipulated by the fingers of the hand used for holding the assembly. Furthermore, the operating mechanism of the lever is spring-loaded to cause return of the lever (and return of the deflector) when the finger pressure is released. In this way, the lateral to and fro manipulation of the flexible end portion of the surgical instrument is accomplished by the surgeon using one finger of one hand to manipulate the operating lever. The surgeon can thus use the same hand for adjusting the angular position of the deflector, while using the other hand to advance, twist or withdraw the instrument.
Such unifunctional instrument assemblies have found use in neurosurgery and other relatively complex procedures, including aspiration of intracerebral hematomas, drainage of chronic subdural hematomas, the fenestration of arachnoid and other cysts, third ventriculostomy, choroid plexus fulguration and spinal disc exenteration. In some of these systems a second or subsequent surgical instrument may be introduced down a parallel sleeve, but the systems lack the means for concerted interaction between surgical instruments.
Neuroendoscopic surgery shows a wealth of potential as a neurosurgical technique, which has hitherto been substantially unrealised due to a lack of appropriate surgical equipment. Unlike other current trends in computer-assisted point targeting systems, neuroendoscopy is primarily an optical system in the tradition of macro- and microsurgery. The great hope for endoscopy is its ability to provide for a minimal approach. Parallel function, with instrument systems which operate independently of the endoscopic position, can allow for a confined approach, with a reduction in unnecessary lateral dissection and retraction. This is enhanced by the greater ease with which paraxial areas can be seen, and with flexible endoscope systems more peripheral areas could also be visualized from within the same minimal approach. Endoscopy also enables stability in the operating system and instruments, in contradistinction to microsurgery, where the stability of the instruments is directly dependent upon the surgeon and his or her ability to operate in an awkward postural position, which in turn is subservient to the optimal position of the microscope. With endoscopy the use of television monitors from which to operate can give the surgeon enormous postural freedom and freedom of movement, with the instruments held at a convenient distance from the body. With the added stability imparted to the instruments by the endoscopic system, it is likely that neuroendoscopy is easier to master than microsurgery.
A particular advantage of endoscopy is that it is depth independent. With the optical viewing point at, or around, the tissue-instrument interface regardless of the depth, this means that the same viewing quality is maintained throughout. Endoscopy can provide a really excellent view of the tissue and instruments; if the optical telescope function is made independent of the parent endoscope as will be discussed in greater detail below, a variety of viewing perspectives could be easily attained, without altering the overall intracranial position of the parent endoscope.
In International (PCT) Patent Application No. WO 92/19146 there is described (
FIGS. 10 and 11
) a laser instrument for use in neuroendoscopic and similar delicate procedures, having an ergonomic handle to provide specific control. The instrument comprises a thin rigid hollow shaft carrying an internal laser fibre and having a distal end provided with a deflector for the fibre and a proximal end to which is pivotally attached the ergonomic control handle. The handle is hollow and internally carries the laser fibre, apart from one portion of the fibre which lies exposed against the outside of the handle. Fine control of advancement/retraction of the laser fibre is provided by simple index finger pressure by the surgeon on the exposed portion of the fibre to press it against the handle. The handle is connected to the deflector via a push-pull wire pair passing through the hollow shaft and arranged so that pivotal movement of the handle causes the deflector to move to deflect the operative end of the laser fibre. The instrument is mounted with an endoscope telescope in an instrument assembly during use. Generally similar instruments are also described, in which the distal end has a mechanically operable function (e.g. a bipolar diathermy tool, a rongeurs tool or a forceps tool) and the handle is provided with a rocker mechanism operated by the surgeon's index and middle fingers to control the operation of the instruments.
The ergonomic handle of the instruments described in WO 92/19146 is an elongate handle of a “pencil grip” type. It suffers from three prime disadvantages. Firstly, the use of the rocker mechanism for controlling mechanically operable distal end parts makes it difficult for the surgeon to grip the handle securely without fear of inadvertently moving the distal end of the instrument. Secondly, the handle of the laser instrument, which in contrast to the other instruments described can be securely gripped between the surgeon's thumb and middle finger, is attached to laser generating apparatus and the surgeon cannot move his or her hand around the end of the handle while maintaining a secure grip between the thumb and middle finger. Thirdly, the pivoting of the handle to control the instrument deflection function requires an inconvenient wrist movement by the surgeon.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an improved or at least alternative surgical instrument assembly for use in endoscopic surgery, particularly endoscopic neurosurgery.
According to a first aspect of the present invention, there is provided a surgical instrument assembly for use in endoscopic surgery, particularly endoscopic neurosurgery, the assembly comprising:
(a) a surgical instrument having proximal manually operable instrument control means and distal operative means coupled thereto, the operative and control means being spaced mutually apart by a shaft, and a handle being provided in general proximity to the control means whereby a surgeon can hold the instrument;
(b) optical means (more particularly an endoscope telescope and lighting system) for viewing a distal end of the instrument in an operating zone within a patient; and
(c) support means for retaining the instrument and optical viewing means

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surgical instrument assembly for use in endoscopic surgery does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surgical instrument assembly for use in endoscopic surgery, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surgical instrument assembly for use in endoscopic surgery will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3114175

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.