Surgery – Instruments – Forceps
Reexamination Certificate
2000-03-06
2002-03-19
Truong, Kevin (Department: 3731)
Surgery
Instruments
Forceps
C606S207000
Reexamination Certificate
active
06358268
ABSTRACT:
FIELD OF INVENTION
This invention relates to a surgical instrument and more particularly to a combined laparoscopic scissors and forceps device.
BACKGROUND OF INVENTION
Laparoscopic surgery is used to provide a wide variety of surgical procedures on a patient's abdomen. The application of laparoscopic methods continues to grow as techniques are refined and the associated surgical instruments are improved. Patients benefit from laparoscopic procedures because the methods employed minimize the amount of trauma associated with a given procedure. Hence, patient survival is enhanced and recovery times are decreased.
Prior art laparoscopic surgical instruments typically include a handle, a 33 centimeter length, 5 millimeter diameter shaft which can be inserted through a cannula placed in a patient's abdominal wall, and scissors or tissue grasping jaws (e.g., forceps) extending from the end of the shaft.
In some cases, laparoscopic graspers, and/or scissors and some other types of instruments have the ability to apply RF energy in order to locally vaporize tissue and thereby cut through it or to coagulate blood vessels. There are two common ways in which the RF energy is applied. In either method, current travels between two electrodes. In monopolar instruments, the surgical instrument serves as one electrode and the second electrode is a large surface area electrode placed on the patient. In bipolar instruments, both electrodes are disposed on the surgical instrument in close proximity to one another.
Many conventional laparoscopic surgical instruments tend to be clumsier than those used in conventional surgery. As explained above, in laparoscopic surgery, the surgical instruments are inserted through a cannula placed in the patient's abdominal wall. To keep patient trauma to a minimum, only a limited number of cannula are employed for a given procedure. Often, using existing surgical instruments, the instruments must be repeatedly removed from the cannula and replaced with different instruments and removed and replaced again. This process of repeated instrument exchanges greatly increases the time it takes to perform a given medical procedure.
Two commonly used laparoscopic instruments are scissors and tissue graspers. Scissors are used to dissect tissue, transect ligated vessels or other bodily ducts (such as fallopian tubes), trim sutures and ligatures and to perform other cutting functions. Graspers or forceps are used to grip and manipulate tissue and to perform a variety of blunt dissecting procedures. Tissue is either grasped and pulled away from substrate tissue to which it is loosely connected or the blunt tips of the closed graspers are inserted between loosely connected tissue strata and then the tips are forced apart separating the tissue strata. The operation of ordinary scissors and forceps is very familiar to surgeons and non-medical personnel alike and their function and operation are somewhat intuitive. This fact remains true when scissors or forceps are incorporated into a traditional laparoscopic instrument.
Traditionally, when tissue cutting procedures are required, a scissors type laparoscopic instrument is used. When tissue grasping procedures are required, a forceps type laparoscopic instrument is used. Thus, the surgeon must either employ two cannulas or switch instruments depending on whether cutting or grasping procedures are required.
To overcome this problem, those skilled in the art have developed surgical instruments with detachable scissors and forceps end assemblies, and surgical instruments with combined scissors and forceps end assemblies.
For example, U.S. Pat. No. 5,893,875 discloses a surgical instrument with replaceable end effector assemblies. To switch between tissue cutting and grasping procedures, however, the surgeon must withdraw the instrument from the patient and replace the scissors end effector assembly with a forceps end effector assembly.
This practice of instrument exchange greatly increases the time it takes to complete a given surgical procedure. An attempt to overcome this problem is disclosed by a combined cutting blade/forceps end assembly. Pivoting jaws
10
and
12
,
FIG. 1
, are configured as forceps and blade
14
attached to pivoting jaw
10
allows the surgeon to cut the tissue. See U.S. Pat. No. 5,456,684. In another prior art device, one portion of each operable jaw
20
,
22
,
FIG. 2
, includes scissors portions
24
,
24
′ and a forceps portions
26
,
26
′, respectively. See U.S. Pat. No. 5,908,420.
In another prior art device, cutting blade
30
,
FIG. 3
, is extendable between forceps
32
and
34
. See U.S. Pat. No. 5,496,317. In still another device, blade
40
,
FIG. 4
is disposed between forceps
42
and
44
. See U.S. Pat. No. 5,573,535. See also the BiCoag® bipolar cutting forceps available from Everest Medical, 13755 First Avenue North, Minneapolis, Minn. 55441-5454.
All of these devices suffer from the fact that the scissoring and grasping capabilities are poorer than that which is available separately in single function devices.
Moreover, surgeons will not generally use any surgical instrument which does not operate in the way expected or in a way which is not intuitive. When conventional surgical devices with scissor grips are used, it is expected that the action of closing the scissor grips closes the scissor blades for tissue cutting or brings the forceps jaws together to grasp the tissue between them. This is not the case with the device discussed above. For example, in order to use the device disclosed in U.S. Pat. No. 5,573,535, the surgeon uses a scissor grip to operate the forceps jaws but must operate a separate lever to effect distal movement of the blade member to cut tissue. See the '535 patent, col. 5, lines 43-66.
Other shortcomings of prior art devices include their complexity and high manufacturing costs. High manufacturing costs are especially important in surgical devices because they are often used in connection with one procedure on a given patient and then discarded.
BRIEF SUMMARY OF THE INVENTION
It is therefore an object of this invention to provide a surgical instrument with an end assembly which includes both a pivoting scissor blade and a pivoting forceps jaw.
It is a further object of this invention to provide such a surgical instrument which eliminates the need for the surgeon to switch instruments during a given medical procedure.
It is a further object of this invention to provide such a surgical instrument which eliminates the need for additional cannulas inserted through a patient's abdominal wall.
It is a further object of this invention to provide such a surgical instrument in which the scissoring and the grasping capabilities are as good as that which is available separately in single function devices.
It is a further object of this invention to provide such a surgical instrument which operates in the way expected and whose use is intuitive.
It is a further object of this invention to provide such a surgical instrument which does not require the surgeon to operate separate levers in order to effect tissue cutting or tissue grasping procedures.
It is a further object of this invention to provide such a surgical instrument which is simple in design and which can be manufactured at a low cost.
It is a further object of this invention to provide such a surgical instrument which allows surgeons to remain focused on the operating procedure and not distracted by instrument exchanges or the need to operate separate levers.
It is a further object of this invention to provide such a surgical instrument which results in medical procedures performed in a shorter period of time.
It is a further object of this invention to provide such a surgical instrument which can be accommodated by a five millimeter cannula.
It is a further object of this invention to provide such a surgical instrument which can be easily and ergonomically operated by one hand. It is a further object of this invention to provide such a surgical instrument which can be equipp
Evans Stephen C.
Hunt Robert B.
Melsky Gerald S.
Hunt Robert B.
Iandiorio & Teska
Teska Kirk
Truong Kevin
LandOfFree
Surgical instrument does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Surgical instrument, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surgical instrument will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2838048