Surgical implant system

Surgery – Body protecting or restraining devices for patients or infants – Drapes

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S852000

Reexamination Certificate

active

06810880

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to the field of surgery devices and methods, and more particularly to a system to provide and maintain a sterile surgical field, especially during implant surgery.
2. Background Information
Providing and maintaining sterile conditions during surgery is very important and the subject of many different apparatus, techniques and methods. Providing a sterile field is aided by thorough cleaning and disinfection or sterilization of the operating site. Contact disinfectants such as iodine scrub and alcohol are commonly known. Ultraviolet light is also known as a contact or surface disinfectant and is used in certain circumstances. Where complete disinfection or sterilization is not possible or practical, draping and shielding apparatus, techniques and methods are used. These include application of sterile cloth or plastic drapes over non-surgical areas of the patient and erection of shields between the surgical field and other areas of the operating room. Members of the operating team may use shields or respirators to reduce the probability of their introducing contamination into the field. Laminar flow ventilation systems in the operating theatre are also provided to sweep air-borne contaminants through and away from the patient before the contaminants have an opportunity to settle in the field. Of course, all the implements that are intended for use in the field are sterilized. Members of the surgical team also perform rigorous scrub and glove protocols to avoid contamination. All of these techniques are directed to providing and maintaining a sterile field for the surgery.
With all of these precautions, one source of contamination that is most difficult to control is contamination from the patient. Typically, this contamination is from organisms on the skin and particularly organisms on the skin at or in proximity to the incision site. Complete disinfection or sterilization of skin is almost impossible, as the required agents or techniques are very harsh or intolerable. Accordingly, the known techniques call for maximum draping or shielding in an attempt to prevent contaminant access from the patient's skin into the surgical field.
One draping technique calls for a skin scrub with the known surface disinfectants. Then, a flexible plastic drape or membrane is adhered to the patient over the projected incision site. The adhesive is either on the membrane before it is applied to the patient, or the adhesive is sprayed on the skin and the membrane is then adhered to the adhesive on the skin. The intent with this technique is to cover or shield as much of the skin as possible to prevent transmission of contaminants from the skin to the incision or wound. If the sterile membrane is properly applied, the surface that is exposed in the surgical field will be sterile. Then, during surgery, any fluids or implements that subsequently make contact with the membrane surface will remain sterile. If the fluids or implements are later introduced into the incision or wound, there is no contamination of the wound. This works well, except that surgery requires an incision and the incision must penetrate both the membrane and the skin. During this incision, there is localized bleeding and the blood readily picks up contaminants from the edge of the incised skin. Additionally, most of the adhesives used to adhere the membrane to the skin are not completely water tight and allow fluids, such as blood, to penetrate between the membrane and the skin. This intrusion of fluids further contaminates the fluids, producing additional possible contamination of the wound. The contaminated fluids then flow around the area of the incision and any instruments that make contact with the edges of the incision or the incision itself can become contaminated and carry the contamination deeper into the incision. The implements can also transfer the contamination to other implements that are in the field.
Infection and contamination during implant surgery is particularly problematic. For some surgical techniques, the time required to perform the implant is lengthy, providing greater opportunity for contamination. Additionally, immediately following the implant surgery, there may be an area of reduced vascularization in the area of the implant. This means that systemic treatments are less effective in treating infection. Where it might be appropriate to maintain a drain to treat infection with other deep surgical procedures, this may be inadvisable or impossible with an implant.
The methods available do not adequately address the problems of wound or incision contamination during implant operations. In particular, they do not address shielding or protection from the incision site itself. Systems and methods to address these and other deficiencies are needed.
SUMMARY OF THE INVENTION
In one embodiment, it is an object of the invention to provide a surgical system that includes a membrane to form a pouch or envelope, a seal to substantially close the envelope, and surgical implements in the envelope. The membrane includes an adhesive that is on the outside of the envelope to adhere to a surgical site and a fold in the membrane forms the envelope.
It is another object of the invention that the adhesive is on both sides of the envelope. It is another object of the invention that the adhesive is on only one side of the envelope. It is another object of the invention that the adhesive is applied to the patient and then the envelope is adhered to the patient.
It is another object of the invention that the system includes a sealed or sealable port with a port extension. It is another object of the invention that the port communicate between the interior and exterior of the envelope. It is another object of the invention that the port is sealed to the membrane. It is another object of the invention that the port is an area of the membrane that is intended to be incised.
It is another object of the invention that the port is near the fold in the membrane.
It is another object of the invention that the implement and the port are configured to cooperate with each other.
It is another object of the invention that there is an opener to open the envelope, the opener may be any of a number of different types, including a tear seal. It is another object of the invention that the opener allows the envelope to be substantially opened.
It is another object of the invention that when the envelope is opened, the membrane is substantially flat.
It is another object of the invention that the membrane is of many different types, including densified ePTFE, ePTFE, PTFE, plastic and cloth.
It is another object of the invention that the membrane is either flexible or rigid.
It is another object of the invention that the implements that are within the envelope of the system include surgical implements; implants; implant instruments; implant replacement instruments; implant power replacement instruments; such as pacemaker power supplies; and surgical supplies, such as suture, gauze and sponges.
It is another object of the invention that the implements are disposable, reusable, plastic or durable.
It is another object of the invention that the system is made by forming an envelope in the membrane; disposing adhesive on the exterior of the envelope; placing surgical implements inside the envelope; and sealing the envelope.
It is another object of the invention that to use the system, an incision is made in the patient; the cover on the port is removed from the system; the port is inserted in the incision; adhesive is exposed on the membrane; and the membrane is adhered to the surgical site. It is another object of the invention that following the surgery, the port and membrane are removed and the incision is closed. It is another object of the invention that following the surgery, the port is removed, leaving the membrane adhered to the patient, and the incision is closed. It is another object of the invention that after the incision is closed, the membrane and adhesive are

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surgical implant system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surgical implant system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surgical implant system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3311575

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.