Surgery – Instruments – Electrical application
Reexamination Certificate
2001-03-05
2002-10-08
Kearney, Rosiland S. (Department: 3739)
Surgery
Instruments
Electrical application
C606S040000, C606S049000, C606S050000
Reexamination Certificate
active
06461352
ABSTRACT:
FIELD OF THE INVENTION
This invention is related generally to a power-actuated surgical tool with a handle-mounted self-sealing switch assembly. One particular version of this tool is an electrosurgical tool that has handle-mounted switches, is relatively easy to manufacture, provides an indication if fluid penetrates its handle and that has tip that fosters fluid circulation adjacent the surgical site to which it is applied.
This invention is also related generally to a system and method of shrinking capsulary tissue and, more particularly, to a system and method for shrinking capsulary tissue by applying heat, thermal energy, to the tissue.
BACKGROUND OF THE INVENTION
Electrosurgical tools have been used for a number of years to cut and shape tissue at the surgical sites to which these tools are applied. A typical electrosurgical tool has an elongated shaft, sometimes called a “probe,” with a handle at one end and a tip at the opposed end. One type of electrode surgical tool available to surgeons is referred to as a bipolar electrosurgical tool. An active electrode is fitted into the tip of this tool. The shaft of the bipolar electrosurgical tool functions as the return or reference electrode. The tool is applied to a surgical site at which there is a saline solution, a conductive fluid. A voltage is applied at a very high frequency, 50 k Hz to 10 M Hz, from the active electrode to the adjacent end of the shaft. This signal flows through, arcs through, the saline solution and the body tissue against which the tip is applied. When the signal is at a relatively low power, typically under 40 Watts, the signal can coagulate fluid such as blood to seal the tissue closed. When the signal is at a relatively high power, typically 20 Watts or more, it vaporizes the tissue to which it is applied so as to ablate, remove, the tissue. The overlap in the power ranges between the coagulation and ablation modes of operation is due to the fact that, for a given power setting, whether or not a particular electrode coagulates or ablates tissue is also a factor of the size and shape of the head of the electrode. Often, when an electrosurgical tool is used to ablate tissue, it is considered to be operated in the “cutting” mode.
Many currently available electrosurgical tools are designed so that mounted to the handles are switches for regulating the on/off state of the tool and the mode in which the tool is operated. The mounting of these switches to the tool handle makes it possible for the surgeon to, with a single hand, control both the position of the tool and the operation of the tool. The switches are typically mounted to the tool handle in liquid-tight seal assemblies. This mounting is necessary to prevent the conductive liquid that is often present in a surgical environment from entering the handle and shorting out any electrical components therein.
Presently available electrosurgical tools work reasonably well for the purposes for which they are designed. However, there are still some limitations associated with the currently available tools. Some of these limitations are due to the fact that, when an electrosurgical tool is operated in the ablation mode, bubbles form on the surface of the active electrode. One reason these bubbles form is that the electrical energy discharged by the electrode heats the conductive saline solution that surrounds the electrode. The heating of this solution causes it to vaporize and form bubbles. Initially, when relatively low levels of heat are present, the fluid immediately adjacent the surface of the electrode is subjected to thin film boiling and transitional boiling. In this type of vaporization, relatively small bubbles of gaseous state solution form.
However, when additional thermal or electromagnetic energy is radiated from the surface of the active electrode, the adjacent saline solution is subjected to rapid nucleate boiling. During nucleate boiling, relatively large bubbles of vaporized solution form on the surface of the electrode. These bubbles are sometimes referred to as gas pockets. Moreover, during some high powered cutting modes of operation, the electrical current applied to the solution and surrounding tissue causes electrochemical processes to occur in this tissue and liquid. These electrochemical processes produce gaseous state products that contribute the formation of large bubbles and the gas pockets.
At a minimum, these bubbles are a nuisance. The presence of these bubbles interferes with the surgeon's view of the surgical site. This is especially a problem when the electrosurgical tool is employed in an endoscopic surgical procedure. In an endoscopic procedure, the electrosurgical tool is applied to the surgical site through a small opening formed in the patient's body known as a portal. The surgeon views the surgical site through an endoscope that is directed to the surgical site through another portal. An advantage of an endoscopic surgical procedure in comparison to a conventional surgical procedure is that it requires less of the patient's body to be opened up in order to gain access to the surgical site. However, when a conventional electrosurgical tool is employed in an endoscopic surgical procedure, the bubbles generated in the relatively small confines of the space of the surgical site can significantly block the surgeon's view of the site.
Moreover, these bubbles are electrically and thermally insulating. The large bubbles that form gas pockets during high powered cutting can inhibit the flow of new solution that rewets the electrode. Consequently, the bubbles reduce the extent to which current can arc through the tissue that is to be ablated. Sometimes, these bubbles significantly reduce current flow through the tissue. The current flow stays in the reduced state until the bubbles collapse or move away and the saline solution or body fluid flows back into the space between the electrode and the shaft. Thus, sometimes when a presently available electrosurgical tool is actuated, the current only flows in a pulse pattern through the tissue to be ablated.
Moreover, many current electrosurgical tools are provided with wire wound electrodes. It is difficult to form wire wound electrodes so that they have heads with shapes that are especially useful for performing electrosurgical procedures.
Providing a seal around the handle switches can significantly add to the overall cost and assembly of the tool.
Also, sometimes, even with the best seals, there may be liquid leakage into the handle of an electrosurgical tool. This leakage, if not promptly detected, at a minimum, can lead to the degradation of the tool performance. In a worse case scenario, this leakage can cause a conductive path to develop along the outer surface of the handle. If this occurs, the personnel handling the tool may be subjected to electrical shock.
Still another method by which an electrosurgical tool is employed to shape, remove very selected amounts of tissue is by a capsulary shrinkage procedure. In a capsulary shrinkage procedure, the cells forming soft tissue are desiccated, reduced in size. In this type of procedure, as a result of the heating of the active electrode, there is a conductive transfer of the heat from the electrode to the location at which the capsulary shrinkage of tissue is to occur. The thermal energy applied to the site causes the cells forming the tissue at the site to undergo capsulary shrinkage. This process is referred to as a thermally capsulary shrinkage procedure.
In a presently available electrosurgical tool, internal to the tip or distal end of the shaft there may be a small thermistor or other temperature-sensitive transducer. This transducer monitors the temperature of the active electrode to inferentially provide an indication of the temperature of the surgical site. This temperature data is very important because there is a limited temperature range to which tissue can be heated in order to foster its shrinkage without causing damage to the tissue. More particularly thermal capsulary shrinkage of tissu
Morgan Roy
Prakash Mani
Saravia Heber
Voges Jens
Flynn ,Thiel, Boutell & Tanis, P.C.
Kearney Rosiland S.
Stryker Corporation
LandOfFree
Surgical handpiece with self-sealing switch assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Surgical handpiece with self-sealing switch assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surgical handpiece with self-sealing switch assembly will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2985068