Surgery – Specula – Retractor
Reexamination Certificate
2001-08-31
2004-11-30
O'Connor, Cary E. (Department: 3732)
Surgery
Specula
Retractor
Reexamination Certificate
active
06824511
ABSTRACT:
BACKGROUND
1. Field of the Invention
This invention relates to systems and methods for fixation or immobilization and retraction of various anatomical and other structures during surgery, including, for example, surgical fixation and retraction of flesh, bone, feet, legs, arms, hands, digits, surgical drapes, and other surgical equipment.
2. Prior Art
Although elements of many new technologies have been transferred to medicine from their original fields, this has generally not happened in the area of basic surgical instruments, even though surgery still largely depends on the skill of an individual surgeon using these tools. Recent research and development activity in medical equipment has been more focused on expensive procedure sets, diagnostic tools, and life-support systems. As a result, conventional surgical fixation and retraction devices have changed slowly and suffer from a number of shortcomings.
(a) Retraction
Surgical retractors are used to provide medical personnel with the ability to hold open an incision area. Typically, retractors are band held or mount on a fixed support assembly. Restraining limbs and digits provides a particular challenge for medical personnel. Hand surgery requires a retraction system that provides a surgeon with flexibility and stability. For example, a surgeon may wish to stabilize a wrist or forearm while adjusting retractors around an incision area of a hand or finger. Often critical decisions are made during the course of the surgical procedure that require alteration to the fixation apparatus.
Traditional retraction systems typically utilize mechanical fasteners to provide a rigid connection among components. Re-positioning the retractor may require additional equipment to change retractive or stabilizing forces. Additional tools may also be required to assemble or to disassemble equipment. This presents problems because it is difficult to add or change equipment in an operating room without compromising the sterile environment. As a result, surgical procedures can be delayed while additional sterile equipment is introduced to the operating facility.
(b) Fixation
A variety of needs also arise in connection with surgery to fix the position of structures, such as surgical instruments, drapes, or a portion of a patient's anatomy, some of which structures “resist” repositioning or maintenance of a selected position. These needs are conventionally addressed with adhesive, such as by use of adhesive tape, and by use of devices that mechanically connect or attach, such as clamps and retractors.
Another problematic shortcoming of existing fixation systems is their reliance on threaded or incremental adjusters. Threaded adjusters are frequently too slow for mid-procedure adjustment. Incremental adjusters are faster but often exert too little or too much retraction in detent positions.
Advances in surgical techniques have created the need for a fixation and retraction system that can be manipulated by the surgeon in the course of the procedure. This is often necessary to provide clear and varied views (visualization) of the incision site during the procedure. Traditional systems and practices require the presence of an assistant for the duration of the procedure to provide and adjust retraction. As a result, procedure errors can occur because of misunderstood verbal communication between the surgeon and the assistant. Thus, it is desirable for the surgeon to be able to manipulate the apparatus and is preferable that it be possible to do so with one hand.
(c) Drapes
Surgical drapes cover patients during surgery to maintain a sterile environment around the operative site. Traditional drapes consisted of cotton polyester blend textile similar to bedsheets. Users of this traditional fabric encounter problems of poor fluid transmission control and virtually no containment of fluids.
In a traditional drape fixation system, pincer style towel clips grasp a surgical drape and are secured to a patient or operating room structure with adhesive tape. To cover a patient with a surgical drape during a surgical procedure using the traditional fixation system, a user must lay a drape over the patient. Once in position, the user clasps a portion of the drape with the pincers of a towel clip. Pincers have pointed tips requiring care by users to avoid puncturing the drape. After grasping the drape, the user must secure the towel clip to a surface, such as an operating room table. Typically, adhesive tape is placed through a towel clip loop and affixed to a surface. In some situations, drapes must be clipped or sutured to the patient to provide fail-safe protection.
New drape fabrics have been developed, including one introduced by W. L. Gore using Goretex™ fabric. Use of the Goretex™ drape during a surgical procedure offers advantages found in outdoor clothing such as protection against wetness. However, new problems are associated with use of the Goretex™ drape. Holes in the drape resulting from the pincer style towel clips destroy the desirable properties of the membrane. It is also undesirable to puncture such drape material with sutures.
In response to these problems, a new generation of drape clips have locking hemostats with large blunt surfaces to support the drape material. In addition, double faced tapes are available for securing drapes. However, double faced adhesive tapes lack the ability to adhere to the drapes effectively, particularly when attaching drapes to skin. This problem has led to somewhat extreme procedures such as scrubbing the patent to improve adhesion. Thus, current fastening methods are inefficient and unreliable, and a need exists for a method and system for securing a surgical drape to a skin surface without puncturing the surgical drape.
The above-described needs and problems, which are merely exemplary, demonstrate that a need exists for a surgical fixation and retraction system that provides stability while allowing efficient, sterile, relatively effortless adjustment of the system prior to or during a surgical procedure.
SUMMARY OF THE INVENTION
This system utilizes table-like ferromagnetic, typically metal, base components to which shielded magnet components attach in order to locate movable fixation and retraction components or other operating theater devices, such a surgical drapes. Ferromagnetic material conducts magnetic flux lines and is therefore is attracted to, and attracts, magnets. Use of small, powerful rare earth magnets permits system components to be attached quickly, easily and securely in an almost infinite number of configurations. Several different configurations of magnet-containing components are designed for direct contact with anatomical and other structures and for attachment to elastic and metal fixation and retraction components. Many of the magnet-containing components resemble chess pieces and are symmetrical about a longitudinal axis normal to the face of the magnet that attaches the component to a metal plate that serves as the base component. As a result, only location on the base plate matters, while rotational position relative to the base plate and other components does not matter. This simplifies assembly and adjustment of the components during use since rotational position generally does not need to be controlled. Fixation components in the form of such bodies of rotation are readily manufactured and are also well adapted for use with readily available disc-shaped rare earth magnets. These shapes also facilitate magnetic flux management, which is critical in the& operating theater environment where numerous ferromagnetic components and sensitive instrumentation may be present.
As is demonstrated in the detailed description of illustrative embodiments of the invention and some of the accompanying figures, this invention is readily usable for human hand surgery. It may also be used in a variety of other human and veterinary surgical procedures with appropriate adjustment of the scale of the components to match the requirements of the, human or animal anatomy involved.
The system is also us
Bell Michael S. G.
Lee Leonard G.
Maxwell Timothy J.
O'Malley Michael T.
Canica Design Inc.
Kilpatrick & Stockton LLP
O'Connor Cary E.
Pratt John S.
Williams Camilla C.
LandOfFree
Surgical fixation and retraction system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Surgical fixation and retraction system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surgical fixation and retraction system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3334759