Surfactantless latex compositions and methods of making...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Processes of preparing a desired or intentional composition...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S845000, C524S871000, C524S876000

Reexamination Certificate

active

06462109

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to surfactantless latex compositions. More particularly, the present invention pertains to surfactantless latex compositions comprising sulfo-polyester polymers wherein the compositions have a continuous phase comprising water, diol, polyol or a mixture thereof. Still further, the present invention provides methods of making polymer blends comprising a condensation polymer and a latex polymer whereby the latex polymer is derived from a surfactantless latex composition comprising sulfo-polyester polymers. Polymer blends made by such methods are also provided.
BACKGROUND OF THE INVENTION
Traditional latex polymer compositions are dispersions of polymer particles stabilized by surfactant(s) in an aqueous medium Because the latex polymers are colloidal dispersions, the viscosity of a latex system will be lower at a given solids content when compared to a solution-based system. These low viscosity latex dispersions have the capability of delivering a high solids content to an application without the attendant problems associated with high viscosity systems.
In such colloidal dispersions, the continuous medium plays a dominant role in controlling the viscosity of the system. Generally, the continuous phase in a latex polymerization process is water. Water is safe and available in abundant quantities in most locations. It also has low toxicity and flammability.
Solvents other than water may be used in the continuous phase. For example, the addition of diol solvents in minor amounts is known. JP 04335002 discloses the addition of alcohol(s) as an antifreeze agent for the production of vinyl ester emulsions at low temperatures. The amount of the diol solvent disclosed is below 50 wt. %. JP 63186703 discloses the addition of film forming agents and plasticizers in an amount up to 10 wt. % of the solid component to effect film formation properties of the resulting emulsion. JP 06184217 discloses the addition of polyols and water-soluble inorganic salts to vinyl chloride suspension polymerizations to produce vinyl chloride polymers that have good powder fluidity. EP 255137 discloses the use of water soluble alcohol in a water/alcohol level of 100/0 to 50/50 for producing polyvinylester with a high degree of polymerization.
U.S. Pat. No. 3,779,969 describes the use of propylene diol or diethylene diol in amounts of 10 to 50 wt % of the emulsion. The ethylene diol is added to impart improved wetting properties to the emulsion.
U.S. Pat. No. 4,458,050 describes a process for the manufacture of polymer dispersions in diol chain extenders. The patent relates to the production of polymers, which have low viscosity, for the preparation of polyurethanes. The '050 patent does not disclose compositions that result in stabilized latexes in diol solvents. The patent also discloses large amounts of polymeric stabilizers to produce the dispersion polymer.
JP 60040182 and JP 64001786 disclose compositions for water-oil repellency for fabric treatment. The compositions are aimed at producing fluoropolymer emulsions in a mixture of diol solvents. Such fluoropolymers are not the subject of this invention.
U.S. Pat. No. 4,810,763 discloses suspension polymerization in an organic medium for the preparation of pressure sensitive adhesives. The compositions described in the '763 patent are specifically aimed at producing large particle size dispersions. This patent does not disclose compositions with latexes having a particle size below 1000 nm. This reference also does not disclose emulsion polymerization.
U.S. Pat. Nos. 4,885,350 and 5,061,766 disclose the dispersion polymerization of vinyl monomers in hydrophilic organic liquids. To produce the dispersion polymer, large amounts of polymeric dispersion stabilizers are taught.
U.S. application Ser. No. 09/262,156, the disclosure of which is herein incorporated in its entirety, discloses the preparation of latex polymer compositions prepared in a continuous medium comprising diols or polyols. Such diol latex compositions are usually prepared via emulsion polymerization. U.S. application Ser. No. 09/262,156 further discloses the incorporation of these diol latex compositions into a condensation polymerization reaction whereby a latex/condensation polymer blend is obtained. However, in practice of the invention, it has been noticed that when the diol latexes are added to a condensation polymerization reaction foam may be generated. Such foaming is believed to be caused by surfactants used in the diol latex compositions to provide stabilization or to control the particle size of the latex polymer particles in the continuous medium.
Given the problems recognized when diol latex compositions include surfactant, it would be desirable in some circumstances to eliminate surfactant from such compositions. It would further be desirable to prepare latex/condensation polymer blends without surfactant in order to reduce the propensity for such materials to foam during the manufacturing process and to increase the durability of the resulting product.
SUMMARY OF THE INVENTION
The present invention relates to surfactantless latex compositions. More particularly, the present invention pertains to surfactantless latex compositions comprising sulfo-polyester polymers wherein the compositions have a continuous phase comprising water, diol, polyol or a mixture thereof. Still further, the present invention provides methods of making polymer blends comprising a condensation polymer and a latex polymer whereby the latex polymer is derived from a surfactantless latex composition comprising sulfo-polyester polymers. Polymer blends made by such methods are also provided.
Additional advantages of the invention will be set forth in part in the description that follows, and in part will be apparent from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
DETAILED DESCRIPTION OF THE INVENTION
The present invention may be understood more readily by reference to the following detailed description of preferred embodiments of the invention and the Examples included therein.
Before the present compositions of matter and methods are disclosed and described, it is to be understood that this invention is not limited to specific synthetic methods or to particular formulations, and, as such, may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
In this specification and in the claims which follow, reference will be made to a number of terms, which shall be defined to have the following meanings:
The singular forms a, an and the include plural referents unless the context clearly dictates otherwise.
“Optional” or “optionally” indicate that the subsequently described event or circumstances may or may not occur, and that the description included instances where said event or circumstance occurs and instances where it does not.
“Latex” is herein defined as a dispersion of polymeric particles in a continuous phase, the polymeric particles preferably having a size range of from 10 to 1000 nm “Latex particle” is herein defined as such a polymeric particle, which is dispersed in a continuous phase.
“Diol” is a synonym for glycol or dihydric alcohol. “Polyol” is a polyhydric alcohol containing three or more hydroxyl groups. As used herein, the term “diol” to describe the compositions of the invention does not mean that compositions do not comprise polyol. Rather, in such circumstances, the term “diol” shall be used to include the possibility that the compositions of the invention comprise polyols.
The abbreviation “nm” means nanometers.
Ranges are often expressed herei

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surfactantless latex compositions and methods of making... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surfactantless latex compositions and methods of making..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surfactantless latex compositions and methods of making... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2966738

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.