Surface treatment of silicone hydrogel contact lenses...

Stock material or miscellaneous articles – Composite – Including interfacial reaction product of adjacent layers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S411100, C427S002240, C427S533000, C427S536000, C427S539000, C623S006620

Reexamination Certificate

active

06630243

ABSTRACT:

FIELD OF THE INVENTION
The present invention is directed toward the surface treatment of medical devices such as contact lenses and medical implants. In particular, the present invention is directed to a method of modifying the surface of a medical device to increase its biocompatibility or hydrophilicity by coating the device with a carbonaceous layer followed by the attachment of hydrophilic polymer chains to the carbon layer by means of chemical reaction between reactive functionalities on the carbonaceous layer and complementary reactive functionalities on the hydrophilic polymer. The present invention is also directed to a contact lens or other medical device having such a surface coating. The invention also encompasses certain copolymers useful for coating applications.
BACKGROUND
Contact lenses made from silicone materials have been investigated for a number of years. Such materials can generally be subdivided into two major classes: hydrogels and non-hydrogels. Non-hydrogels do not absorb appreciable amounts of water, whereas hydrogels can absorb and retain water in an equilibrium state. Hydrogels generally have a water content greater than about five weight percent and more commonly between about ten to about eighty weight percent. Regardless of their water content, both non-hydrogel and hydrogel silicone contact lenses tend to have relatively hydrophobic, non-wettable surfaces.
Those skilled in the art have long recognized the need for rendering the surface of contact lenses hydrophilic or more hydrophilic. Increasing the hydrophilicity of the contact-lens surface improves the wettability of the contact lenses with tear fluid in the eye. This in turn improves the wear comfort of the contact lenses. In the case of continuous-wear lenses, the surface is especially important. The surface of a continuous-wear lens must be designed, not only for comfort, but to avoid adverse reactions such as corneal edema, inflammation, or lymphocyte infiltration.
Silicone lenses have been subjected to plasma surface-treatment to improve their surface properties, for example, in order to make the surface more hydrophilic, deposit-resistant, scratch-resistant, and the like. Examples of common plasma surface treatments include subjecting contact lens surfaces to a plasma comprising: (1) an inert gas or oxygen as, for example, in U.S. Pat. Nos. 4,055,378; 4,122,942; and 4,214,014; (2) various hydrocarbon monomers as, for example, U.S. Pat. No. 4,143,949; and (3) combinations of oxidizing agents and hydrocarbons, for example, water and ethanol as in WO 95/04609 and U.S. Pat. No. 4,632,844. Sequential plasma surface treatments are also known, such as those comprising a first treatment with a plasma of an inert gas or oxygen, followed by a hydrocarbon plasma. For example, U.S. Pat. No. 4,312,575 to Peyman et al. discloses a process for providing a barrier coating on a silicone or polyurethane lens wherein the lens is subjected to an electrical glow discharge (plasma) involving a hydrocarbon atmosphere followed by oxygen in order to increase the hydrophilicity of the lens surface.
With an oxidizing plasma, for example O
2
(oxygen gas), water, hydrogen peroxide, air, or the like, the plasma tends to etch the surface of the lens, creating radicals and oxidized functional groups. When used as the sole surface treatment, such oxidation renders the surface of a silicone lens more hydrophilic. However, the coverage of such surface treatment may not be complete and the bulk properties of the silicone materials may remain apparent at the surface of the lens, (e.g., silicone molecular chains adjacent the lens surface are capable of rotating thus exposing hydrophobic groups to the outer surface). Such coatings have been found to be thin, whereas thicker coatings tend to crack. Hydrocarbon plasmas, on the other hand, deposit a thin carbon layer (e.g. from a few Angstroms to several thousand Angstroms thick) upon the surface of the lens, thereby creating a barrier between the underlying silicone materials and the outer lens surface. Following deposition of a thin carbon layer on the lens to create a barrier, plasma oxidation can be employed to increase the hydrophilicity of the surface.
Although known surface treatments can be effective in improving the surface properties of non-hydrogel silicone contact lenses, problems are encountered when such treatments are applied to hydrogel lens. Silicone hydrogel lenses are coated in an unhydrated state, but subsequently hydrated during manufacture and prior to use. This hydration causes the lens to dramatically swell, commonly from about ten to about twenty percent in volume, depending upon the water content of the lens. Such swelling of the lens commonly may cause plasma coatings to crack, delaminate, and/or rub off. Furthermore, plasma coatings can compromise lens hydration by not permitting proper lens expansion and thereby causing lens destruction.
Various patents disclose the attachment of hydrophilic or otherwise biocompatible polymeric chains to the surface of a contact lens in order to render the lens more biocompatible. For example, U.S. Pat. No. 5,652,014 teaches amination of a substrate followed by reaction with other polymers, such as a PEO star molecule or a sulfated polysaccharide. One problem with such an approach is that the polymer chain density is limited due to the difficult of attaching the polymer to the silicone substrate.
U.S. Pat. No. 5,344,701 discloses the attachment of oxazolinone or azlactone monomers to a substrate by means of plasma. The invention has utility in the field of surface-mediated or catalyzed reactions for synthesis or site-specific separations, including affinity separation of biomolecules, diagnostic supports and enzyme membrane reactors. The oxazolinone group is attached to a porous substrate apparently by reaction of the ethylenic unsaturation in the oxazolinone monomer with radicals formed by plasma on the substrate surface. Alternatively, the substrate can be coated with monomers and reacted with plasma to form a cross-linked coating. The oxazolinone groups that have been attached to the surface can then be used to attach a biologically active material, for example proteins, since the oxazolinone is attacked by amines, thiols, and alcohols. U.S. Pat. No. 5,364,918 to Valint et al. and U.S. Pat. No. 5,352,714 to Lai et al. disclose the use of oxazolinone monomers as internal wetting agents for contact lenses, which agents may migrate to the surface of the contact lens.
In view of the above, it would be desirable to find an optically clear, hydrophilic coating for the surface of a silicone hydrogel contact lens or other medical device that provides good surface coverage that is durable and won't rub off or delaminate. Still further, it would be desirable to form a coating that allows the contact lens or other medical device to be more comfortable and biocompatible for longer periods of time, which coating, in the case of a contact lens, is simultaneously tear-wettable and highly permeable to oxygen. It would be desirable if such a biocompatibilized lens was capable of continuous wear overnight, preferable for a week or more without adverse effects to the cornea.
SUMMARY OF THE INVENTION
The present invention is directed toward the surface treatment of silicone contact lenses and other silicone medical devices, including a method of modifying the surface of a contact lens to increase its hydrophilicity or wettability. The surface treatment comprises coating the device with a carbon layer, followed by the attachment of hydrophilic polymer chains to the surface of the carbon layer. The carbon layer is then plasma treated to form reactive functionalities containing oxygen, nitrogen, and/or sulfur. Complementary reactive functionalities in monomeric units along a hydrophilic reactive polymer are then reacted with the reactive functionalities on the carbon layer. In a preferred embodiment, a contact-lens surface is pretreated with an oxidizing plasma prior to deposition of the carbon layer, in order to improve adhesio

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surface treatment of silicone hydrogel contact lenses... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surface treatment of silicone hydrogel contact lenses..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface treatment of silicone hydrogel contact lenses... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3157498

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.