Surface-treated steel sheet for battery case, battery case...

Stock material or miscellaneous articles – All metal or with adjacent metals – Composite; i.e. – plural – adjacent – spatially distinct metal...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C148S518000, C148S530000, C148S537000, C427S383700, C205S228000, C429S163000, C429S176000

Reexamination Certificate

active

06551721

ABSTRACT:

INDUSTRIAL FIELD
The present invention relates to a surface treated steel sheet used for an electric battery container, particularly to a surface treated steel sheet used for a container of a first battery such as an alkaline battery or a manganese battery, a battery container with the surface treated steel sheet and a battery.
BACKGROUND OF THE INVENTION
Recently, performance of handy-carrier home electric products has been remarkably improved. Regarding a battery used for such products, it is required high grade and high performance. In a conventional art, in the case that a steel sheet is used for a container of the above described battery, a nickel plating steel sheet has been press-formed or a cold rolled steel sheet press-formed has been plated with nickel which has a good adhesive characteristic with respect to be adhesive to a surface of the steel sheet.
In order to improve a battery performance, an adhesive characteristic between an inner surface of a container and positive electrode active material is strengthened. Simultaneously, in order to enlarge an area of the inner peripheral surface of the container, it has been recommended various methods for reducing internal resistance of the container after finishing a step of forming a hard plating layer made from nickel-phosphorous alloy or nickel-tin alloy and so on.
In such a case, although the nickel-tin alloy is superior in view of reducing the internal resistance, there is a drawback. That is, a discharging characteristic is deteriorated while the alloy layer is contacted with alkaline liquid for a long time.
If it is selected and used metal or alloy having a good adhesive characteristic with respect to a steel container and positive electrode active material and of which degree is comparable to the nickel-tin alloy and a good discharging characteristic which is not deteriorated while the metal or alloy is contacted with alkaline liquid for a long time, the above drawbacks would be resolved and a life-span of such a battery would be extended.
DISCLOSURE OF THE INVENTION
A present invention is developed by utilizing a feature that Bismuth metal has an excellent anti-alkaline characteristic so that compounds of a plating layer is not solved even if the bismuth metal is contacted with alkaline solution for a long time and another feature that the metal is apt to be diffused so that an alloy layer can be formed easily. According to these features, it can be accomplished to provide a battery of which the discharging characteristic is not deteriorated for a long time by employing metal including bismuth metal as an inner surface of a battery container.
In order to accomplish the above purpose, a method according to the present invention is characterized in that a surface treated steel sheet for a battery container in which a nickel-bismuth alloy layer is formed on at least one surface of the steel sheet and the alloy layer is formed by an electrolyte plating method and an inner surface of the battery container is made of metal combined by a steel sheet for a battery container and a steel sheet in which the nickel-bismuth alloy layer is diffused. If a steel sheet made of only bismuth metal is used, the layer is apt to be peeled. Once the layer begins being peeled, the inner nickel layer contacts with alkaline solution directly. Such a phenomenon is unlikely.
By using such a steel sheet including a diffused alloy layer, an adhesive characteristic between a steel sheet used for a container and the alloy layer becomes proper and the discharging characteristic is not deteriorated since a solved amount of the alloy contacted with alkaline solution is remarkably less even if the alloy contacts with the alkaline solution for a long time.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, each embodiment of the present invention will be described in order.
(1) Steel sheet
When a battery according to the present invention is manufactured, a mild steel sheet should be prepared. Regarding the mild steel sheet, it is preferable that a cold rolling low carbon aluminum killed steel, an extremely low carbon steel sheet of which carbon content is equal or less than 0.003% and a non-aging extremely low carbon steel sheet in which niobium, boron and titanium are added. A reason why these mild steel sheets are used is an easy ironing process in accordance with the following steps. It is preferably that a thickness of the used steel sheet is about from 0.10 mm to 0.40 mm. Since it becomes easier to form a can in accordance with the following DI method (drawing and ironing) or the following DTR method (drawing thin and redraw).
(2) Nickel-Bismuth alloy plating
In order to form a nickel-bismuth alloy plating layer, it may employ a method in which nickel plating is firstly treated as a strike plating and then bismuth plating is treated so as to form the alloy. Alternatively, another method in which the nickel plating is firstly treated as strike plating and then nickel-bismuth alloy plating is treated thereon may be employed. Further, it may be employed another method in which nickel-bismuth alloy plating is treated without treating strike plating.
Regarding a nickel plating method, it may be employed a conventional non-electrolyte plating method or an electrolytic plating method. Further, regarding the electrolytic plating methods, a conventional watt bath, a sulfamin acid bath, a boric fluoride bath and so on can be employed as a plating bath. A thickness of nickel plating is preferably from 1 &mgr;m to 10 &mgr;m. The nickel plating is treated so as to improve an adhesive characteristic with respect to the following bismuth plating. The thickness is preferably equal or less than 10 &mgr;m. If the thickness is less than 1 &mgr;m, it would be difficult to form a diffused layer operated in the following treatment steps.
Bismuth plating may be treated in any conventional plating bath such as a perchloric acid bath, a pyrophosphoric acid bath, citric acid bath, a metasulfonic acid bath, a chloride Bismuth bath since basic components of the bathes are suitable for a purpose of the invention. In general, if organic components are added to a bath, a strict bath control is required so that a cost is apt to become higher. However, in the case of forming an extreme thin plating layer according to the present invention, the above drawbacks do not become so serious.
In a chloride bath, components thereof are only Bismuth chloride of 80 to 120 g/L, sodium chloride of 15 to 20 g/L and hydrochloric acid of about 200 ml/L. Although the components are very simple, processing steps are very complicated. For example, it is necessary to actuate a polar cycle in which a cathode is used for 10.5 seconds and the an anode is used for 5 seconds alternatively. In the case of providing a nickel strike plating layer, the nickel layer is solved when the plating layer is immersed in the bath so that the plating layer has to be immersed into the bath only for an anode cycle.
In the case of the metasulfonic acid bath, basic bath components are metasulfonic acid and bismuth oxide solved therein in which Bi
3+
is finally 20 g/L and a free acid density is 2N. Further, diffusing agent and gloss agent are selectively added. For example, polyethylene glycol nonyl-phenyl-ether may be used as the diffusing agent and amine-aldehyde system solution of 20% may be used as the gloss agent. A reason why the gloss agent is added is to avoid for powdering a surface of a plating layer. If the gloss agent is included, a cathode potential is apt to be shifted to a potential level at which hydrogen is produced so that crystal of the surface of the plating layer can become finer. In order to obtain the most suitable effect, a ratio of the gloss agent with respect to the diffusing agent is within a range of 1 to 1.5. If the gloss agent or the diffusing agent is used solely, the above effect can not be obtained. A temperature of the bath is preferably from 20 to 25° C. and an current density is preferably from 2 to 5 A/dm
2
. In the case of this type bath, a thickness of the bismuth plati

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surface-treated steel sheet for battery case, battery case... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surface-treated steel sheet for battery case, battery case..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface-treated steel sheet for battery case, battery case... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3026513

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.