Surface roughness characterization of extruded plastic products

Image analysis – Applications – Manufacturing or product inspection

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

264 401, 348 86, 364473, 364556, 425145, 425173, G06K 900

Patent

active

054447950

ABSTRACT:
The surface roughness of an extruded polymeric material is determined by forming a digital image of the extruded surface of the polymeric material and then determining the fractal dimension of any surface distortions of the extruded surface from the digital image. The fractal dimension is a measure of surface roughness and is dimensionless. A value of one indicates a smooth surface, while higher values indicated degrees of roughness. This information may be used to adjust molding conditions to avoid the formation of surface roughness.

REFERENCES:
patent: 4789933 (1988-12-01), Chen et al.
patent: 4860589 (1989-08-01), Williford
patent: 5204124 (1993-04-01), Secretan et al.
patent: 5307292 (1994-04-01), Brown et al.
Arduini et al., "Multifractals and Texture Classification", Universit of Genoa, Italy.
Ballenger, T. F., I. J. Chen, J. W. Crowder, G. E. Hagler, D. C. Bogue, and J. L. White, "Polymer Melt Flow Instabilities in Extrusion: investigation of the Mechanism and Material and Geometric Variables," Trans. Soc. Rheol. 15, 195 (1971).
Barrett, A. M., M. D. Normand, M. Peleg, and E. Ross, "Characterization of the Jagged Stress-Strain Relationships of Puffed Extrudates using Fast Fourier Transforms and Fractal Analysis," J. Food Sci. 57, 227 (1992).
Beaufils, P., B. Vergnes, and J. F. Agassant, "Characterization of the Sharkskin Defect and its Development with the Flow Conditions," Intern. Polymer Processing IV, pp. 78, 80, 82, 84 (1989).
Bergem, N., "Visualization Studies of Polymer Melt Flow Anomalies in Extrusion," Proceedings of the 7th International Congress of Rheology (Swedish Society of Rheology, Gothenberg, 1976), pp. 50-54.
Blyler, L. L. and A. C. Hart, "Capillary Flow Instability of Ethylene Polymer Melts," Polym. Eng. Sci. 10, 193-203 (1970).
Cogswell, N. F., "Stretching Flow Instabilities at the Exits of Extrusion Dies," J. Non-Newt. Fluid Mech. 2, 37-47 (1977).
Denn, M. M., "Issues in Viscoelastic Fluid Mechanics," Ann. Rev. Fluid. Mech. 22, 13-35 (1990).
Denn, M. M., "Surface-Induced Effects in Polymer Melt Flow," in Theoretical and Applied Rheology, edited by P. Moldenaers and R. Keunings (Elsevier, Amsterdam, 1992), vol. 1, pp. 45-49.
Duvdevani, I. J. and I. Klein, "Analysis of Polymer Melt Flow in Capillaries Including Pressure Effects," SPE J. 23, 41 (Dec. 1967).
Hatzikiriakos, S. G. and J. M. Dealy, "Wall Slip of a Molten High Density Polyethylene I: Sliding Plate Rheometer Studies," J. Rheol. 35, 497 (1991).
Hatzikiriakos, S. G. and J. M. Dealy, "Wall Slip of a Molten High Density Polyethylenes 11: Capillary Rheometer Studies," J. Rheol. 36, 703 (1992a).
Hatzikiriakos, S. G. and J. M. Dealy, "Start-up of Pressure Transients in a Capillary Rheometer," Proceedings of the 38th ANTEC, Detroit, (1992b), p. 1743.
Hatzikiriakos, S. G. and J. M. Dealy, "Role of Slip and Fracture in the Oscillating Flow of HDPE in a Capillary," to appear in J. Rheol, 36, (1992c).
Hatzikiriakos, S. G. and J. M. Dealy, "Start-up of Pressure Transients in a Capillary Rheometer," accepted in Polym. Eng. Sci. (1992d).
Hatzikiriakos, S. G., C. W. Stewart, and J. M. Dealy, "Effect of Surface Coatings on Wall Slip of LLDPE," accepted in Intern. Polym. Proc. (1992e).
Hill, D. A., T. Hasegawa, and M. M. Denn, "On the Apparent Relation between Adhesive Failure and Melt Fracture," Rheol. 34, 891 (1990).
Howells, E. R. and J. J. Benbow, "Flow Defects in Polyethylene Melts," Trans. Plast. Inst. 30, 240 (1962).
Kalika, D. S. and M. M. Denn, "Wall Slip and Extrudate Distortion in Linear Low-Density Polyethylene." J. Rheol. 31, 815 (1987).
Kurtz, S. J., "Die Geometry Solutions to Sharkskin Melt Fracture," in B. Mena, A. Garcia-Rejon, and C. Rangel-Nafaille, eds., Advances in Rheology (UNAM Press, Mexico, 1984), vol. 3, p. 399.
Kurtz, S. J., "The Dynamics of Sharkshin Melt Fracture in LLDPE: Effect of Die Geometry," in Theoretical and Applied Rheology, edited by P. Moldenaers and R. Keunings (Elsevier, Amsterdam, 1992), vol. 1, p. 377.
Lau, H. C. and W. R. Schowalter, "A Model for Adhesive Failure of Viscoelastic Fluids During Flow," J. Rheol. 30, 193 (1986).
Lupton, J. M. and J. W. Regester, "Melt Flow of Polyethylene at High Rates," Polym. Eng. Sci. 5, 235 (1965).
Moynihan, R. H., D. G. Baird, and R. Ramanathan, "Additional Observations on the Surface Melt Fracture Behaviour of Linear Low-Density Polyethylene," J. Non-Netw. Fluid Mech. 36, 255 (1990).
Petrie, C. J. S. and M. M. Denn, "Instabilities in Polymer Processing," AIChE J. 22, 209 (1976).
Piau, J. M., N. El-Kissi, and B. Tremblay, "Low Reynolds Number Flow Visualization of Linear and Branched Silicones Upstream of Orifice Dies," Non-Newt. Fluid Mech. 30, 197-232 (1988).
Piau, J. M., N. El-Kissi, and B. Tremblay, "Influence of Upstream Instabilities and Wall Slip on Melt Fracture and Sharkskin Phenomenon during Silicones Extrusion through Orifice Dies," J. Non-Newt. Fluid Mech. 34, 145 (1990).
Ramamurthy, A. V., "Wall Slip in Viscous Fluids and Influence of Materials of Construction," J. Rheol. 30, 337 (1986).
Tordella, J. P., "Unstable Flow of Molten Polymers," in F. R. Eirich, ed., Rheology (Academic, New York, 1969), vol. 5, p. 57.
Tremblay, B., "Sharkskin Defects of Polymer Melts: The Role of Cohesion and Adhesion," J. Rheol. 35, 985 (1991).
Vinogradov, G. V. and L. I. Ivanova, "Viscous Properties of Polymer Melts and Elastomers Exemplified by Ethylene-Propylene Copolymer," Rheol. Acta 6, 209 (1967).
White, J. L., "Critique of Flow Pattems in Polymer Fluids at the Entrance of a Die and Instabilities Leading to Extrudate Distortion." Appl. Polymer Symposium 20, 155 (1973).

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surface roughness characterization of extruded plastic products does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surface roughness characterization of extruded plastic products, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface roughness characterization of extruded plastic products will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2147895

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.