Surface neuroprosthetic device having an internal cushion...

Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Electrical energy applicator

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C607S048000

Reexamination Certificate

active

06829510

ABSTRACT:

FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to neuroprosthetic devices, and more particularly, to a surface neuroprosthetic device having an internal cushion interface system for improved functional electrical stimulation.
It is known that movement impairment in a limb can result from various neurological or orthopedic pathological conditions, such as stroke, spinal cord injury, head injury, cerebral palsy and multiple sclerosis. Selected muscles of the impaired limb can be triggered to contract and to perform a controlled functional activity, such as walking and standing or grasping and lifting, by surface Functional Electrical Stimulation (FES). FES has been used both as a therapeutic modality and for the improvement or restoration of impaired activities.
Devices based on FES have been developed for activating specific body sites. Such devices for the lower limb include gait restoration and gait modification systems, such as the dropfoot system for activating the ankle joint, and systems that, in addition, activate the knee joint. Typical examples of devices for stimulating the lower limb are U.S. Pat. No. 4,697,808 to Larson, et al., and Liberson, et al., Arch. Phys. Med. and Rehabilitation, pp. 101-105 (February 1961). Other devices for the upper limb, such as U.S. Pat. No. 5,330,516 to Nathan, activate the hand, wrist, or elbow.
U.S. Pat. No. 5,330,516 teaches that to relieve regions of high localized pressure between a splint and a hand, semi-rigid padded plates may be inserted between the splint and the skin. This is particularly applicable to the dorsal surface of the hand, where splint/skin contact pressures are high during hand prehension. It must be emphasized that the purpose and function of these pads is to provide comfort, and not serve to support the electrodes, nor to promote the conforming of the electrode contact surface to the skin.
Additionally, there is a danger in known rigid and semi-rigid devices of pinching soft body-tissue between the shells while closing the device. This is particularly dangerous where sensory touch and pain feedback are impaired in various neurological pathologies.
U.S. Pat. No. 5,695,452 to Grim, et al., and U.S. Pat. No. 6,179,800B1 to Torrens are typical examples of a device imposing foam or padding between a shell surrounding a limb. Neither device is a FES device, nor do the devices include electrodes. U.S. Pat. No. 6,179,800B1 discloses a method of reduction of Colles' fracture, a specific type of wrist fracture. A splint includes first and second collars pivotally supported on a limb and adjustable to adjust the internal dimensions of the splint. The splint is provided with a support for supporting the extremity of the limb. Although the support allows some movement of the limb extremity, it is appreciated that the device is directed towards immobilization of the limb. By sharp contrast, neuroprosthetic devices require limb and muscle mobility, along with proper positioning of the electrodes against the contour of the skin surface, and maintaining sufficient and even electrode contact pressure as the contour changes with the contraction and relaxation of the stimulated muscles.
During activation of a limb or body site by a surface neuroprosthesis, the stimulation current flows through the electrode, through the skin and interposing biological tissues to the motor nerve, thereby activating the muscle. The effectiveness and comfort of a neuroprosthesis electrode is a complex issue, but is strongly influenced by the mechanical nature of the electrode-skin contact, as well other factors such as the electrical impedances of the electrode and skin component layers, the presence of any conductive liquid interposed between the electrode and skin, and the proximity to the stimulation site of target excitable tissue, and of afferent skin sensors.
The mechanical requirement at the electrode-skin interface is ideally an evenly-distributed pressure of sufficient magnitude depending on the magnitude of the current density being transmitted across the interface. Uneven pressure distribution can result in poor conduction of the stimulation current over a portion of the electrode and reduction in activation of excitable tissue under this electrode portion, together with an increase in the stimulation current density over other portions of the electrode. A high local concentration of the stimulation current density applied to the skin is referred to as a “hot spot” and is to be avoided in view of the discomfort or pain associated with passing such high intensity stimulation currents through the afferent skin sensors.
The result of uneven electrode—skin contact pressure will thus be unreliable and uncomfortable activation of the body limb.
U.S. Pat. No. 4,182,320 to Sweeney and U.S. Pat. No. 5,507,836 to Pohlig disclose inflatable or fluid-pressurized sleeves. U.S. Pat. No. 4,182,320 teaches a disposable, foldable and inflatable protective sleeve for a conventional, re-usable, rigid splint board. The sleeve is not a FES device.
U.S. Pat. No. 5,643,332 to Stein, and U.S. Pat. No. 4,580,563 to Petrofsky disclose FES devices. Neither device has a rigid or semi-rigid exoskeleton shell. U.S. Pat. No. 5,643,332 uses a flexible band, while U.S. Pat. No. 4,580,563 uses a cuff having a zipper for securing the cuff to a arm, thereby assuring that the electrodes are secured at place.
In understanding the requirements of the above-cited art, it must be emphasized that the neuroprosthesis requires the application of sufficient pressure to the regions of the electrodes. A sleeve, by definition, essentially encircles the body limb; such that elastic, pneumatic, or hydraulic pressure applied by the sleeve to the limb tends to compress substantially the whole limb circumference. The application of the requisite electrode contact pressure to the whole limb circumference can result in various deleterious effects such as discomfort, where the neuroprosthesis is in use for long periods, and impairment in the flow of biological fluids through the soft tissue of the limb. Reduction of the radial pressure exerted by the sleeve to allow unimpeded blood flow may result in insufficient electrode pressure, and consequently, partial loss of electrode contact.
A further barrier in the use of a soft elastic sleeve and the like is the requirement for the hemiplegic patient having one plegic hand to don and doff the device. Because the soft elastic sleeve lacks structural rigidity, the patient is faced with mechanical problems, often insurmountable, in positioning the sleeve accurately and in fastening it securely on the limb using only one hand.
Thus, there is a recognized need for, and it would be highly advantageous to have, an internal cushion system for semi-rigid exoskeleton-type neuroprosthetic devices that, in addition to providing comfort, is convenient to don and doff, enables adaptive positioning of the electrodes, and provides both the requisite pressure at the electrode—skin interface and flexibility so as to substantially conform the electrode to the changing shape of the limb.
SUMMARY OF THE INVENTION
The present invention is a surface neuroprosthetic device having an internal cushion system. According to one aspect of the present invention, there is provided a surface neuroprosthetic device for functional electrical stimulation (FES) having an internal cushion interface system, the device including: (a) an at least semi-rigid exoskeleton shell for covering at least a portion of a limb; (b) at least one cushion interface disposed between the shell and the limb, the cushion interface being directly attached to the shell, and (c) at least one electrical stimulation electrode associated with, and supported by, the cushion interface, wherein the cushion interface is configured to transfer pressure from the shell to the electrode, so as to provide electrical contact between the electrode and a skin surface of the limb, thereby effecting functional electrical stimulation of at least one muscle of the limb.
According to further features in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surface neuroprosthetic device having an internal cushion... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surface neuroprosthetic device having an internal cushion..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface neuroprosthetic device having an internal cushion... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3313321

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.