Surface inspection method, surface inspection apparatus, and...

Optics: measuring and testing – Plural test

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S237400

Reexamination Certificate

active

06774987

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a surface inspection method and a surface inspection apparatus employed to detect, for instance, foreign matter (or contamination) adhering to a minute cyclical pattern formed on the surface of a test piece, scarring in such a pattern, or defects such as line width error or film thickness error in the pattern, that are particularly ideal in the inspection of semiconductor wafers such as ASICs, liquid crystal display panels and the like. In addition, the present invention relates to a recording medium and a data signal that provides a surface inspection program.
2. Description of the Related Art
When manufacturing semiconductor devices, liquid crystal display panels, thin film magnetic heads or the like, it is necessary to implement an inspection to detect the presence/absence of foreign matter or the like adhering to a fine pattern formed on the surface of a substrate such as a semiconductor wafer or a liquid crystal panel or defects such as line width errors in the pattern at the stage at which a circuit pattern in a specific layer has been formed, at the ultimate stage at which the circuit patterns in all the layers have been formed and the like. In the prior art, this type of inspection is conducted by an inspector by illuminating the test substrate with illumination light originating from a light source referred to as a macro illumination device and visually observing the scattered light and the diffracted light originating from the surface of the test substrate.
However, such a visual inspection is greatly affected by factors such as the skill and experience of the inspector and the inspection environment. Thus, Japanese Laid Open Patent Publication No. H8-75661 discloses an inspection apparatus that identifies foreign matter and the like by receiving reflected light (scattered light and diffracted light) from a test substrate at a photoelectric detector via a light-receiving optical system and performing image processing on a detection signal output by the photoelectric detector.
As explained above, in the inspection apparatus in the prior art, defects and the like in a pattern on the test substrate are detected by receiving light reflected from the test substrate along a specific direction. Thus, the distribution of defects and the like can be detected promptly over the entire surface of the pattern under inspection, since the diffracted light coming from the entire surface of the test substrate can be received at once by the light-receiving optical system as long as the pattern can be regarded as one type of cyclical pattern having a specific, almost fixed pitch over the entire surface of the substrate, as in a DRAM for instance.
However, in recent years, it has become necessary to conduct inspections on devices constituted of numerous different circuit patterns having different arrangements formed in individual chip areas (shot areas) on a semiconductor wafer, such as the so-called logic-ICs and AS ICs (Application Specific ICs). In such a device, a plurality of types of cyclical patterns having different pitches from each other formed on the test substrate must be inspected. Thus, since only the diffracted light from the cyclical pattern having a specific pitch can be obtained if the optical system has a specific positional relationship relative to the test substrate, there is a concern that defects and the like of cyclical patterns having pitches other than the specific pitch may not be detected.
In addition, since a pattern formed on the surface of the test substrate is achieved by etching or CVD method, the pattern on a semiconductor substrate under the process is formed by thin films for resist. Furthermore, already formed patterns are piled in several layers. As a result, the intensity of the diffracted light may become reduced by the thin film interference and the like. Because of this, if an inspection apparatus in the prior art is set to receive only the diffracted light of a specific order, the diffracted light quantity becomes reduced, which poses a problem in that the likelihood of overlooking defects and the like in the cyclical pattern increases.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a surface inspection method and a surface inspection apparatus that make it possible to detect defects and the like in one type of pattern or in a plurality of types of patterns formed on a test piece easily with a high degree of reliability and efficiency. A further object of the present invention is to provide a recording medium and a data signal that provide a surface inspection program executed by the surface inspection apparatus.
In order to attain the above objects, a surface inspection method according to the present invention for inspecting a pattern formed at a surface of a test piece, comprises: a first step in which a plurality of inspection conditions that are different from each other are set; a second step in which light from the surface of the test piece is detected by irradiating illumination light onto the surface of the test piece under each of the plurality of inspection conditions; a third step in which a plurality of sets of detection information corresponding to the plurality of inspection conditions are generated based upon the detected light; a fourth step in which a logical OR of the plurality of sets of detection information is obtained; and a fifth step in which a decision is made as to whether or not the pattern at the surface of the test piece is acceptable based upon results of the logical OR.
In this surface inspection method, preferably, in the third step: an image of the surface is formed by condensing at least one of specific diffracted light, scattered light and reflected light from the surface of the test piece under each of the plurality of different inspection conditions; the image is converted to an image signal; and the detection information is generated based upon the image signal.
Also, preferably, the pattern comprises a plural types of cyclical pattern; the plurality of inspection conditions are respectively set in correspondence to pitches of the plural types of cyclic pattern.
Also, preferably, the plurality of inspection conditions are each set by rotating the test piece around a specific axis of rotation to change an angle of incidence of the illumination light onto the test piece and a light-receiving angle of the light from the test piece.
Also, preferably, the plurality of inspection conditions are each set by moving a light source of the illumination light to change an angle of incidence of the illumination light and/or moving a position of a light-receiving device that receives the light from the test piece to reset a light-receiving angle.
Also, preferably, the plurality of inspection conditions are each set in conformance to a order of diffracted light corresponding to a specific pitch of the pattern on the test piece.
Also, preferably, the plurality of inspection conditions are each set by adjusting a wavelength of the illumination light.
Another surface inspection method for inspecting a pattern formed at a surface of a test piece, comprises: a first step in which a plurality of diffraction conditions that are different from each other are set; a second step in which diffracted light from the surface of the test piece is detected by irradiating illumination light onto the surface of the test piece under each of the plurality of diffraction conditions; a third step in which a plurality of sets of detection information corresponding to the plurality of diffraction conditions are generated based upon the detected light; a fourth step in which a condition which is other than the diffraction conditions and is outside design diffraction conditions determined in conformance to the pattern is set; a fifth step in which scattered light from the surface of the test piece is detected by irradiating the illumination light onto the surface of the test piece under the condition other than the diffraction condit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surface inspection method, surface inspection apparatus, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surface inspection method, surface inspection apparatus, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface inspection method, surface inspection apparatus, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3296285

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.