Surface features of an implantable medical device

Coating processes – Medical or dental purpose product; parts; subcombinations;... – Implantable permanent prosthesis

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C427S002240, C216S010000, C623S001420, C623S001460, C623S901000

Reexamination Certificate

active

06805898

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to surface features of implantable medical devices, for example stents and grafts, and to methods for forming such surface features.
2. Description of the Background
Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease. A catheter assembly having a balloon portion is introduced into the cardiovascular system of a patient via the brachial or femoral artery. The catheter assembly is advanced through the coronary vasculature until the balloon portion is positioned across the occlusive lesion. Once in position across the lesion, the balloon is inflated to a predetermined size to radially compress against and remodel the artery wall for dilating the lumen. The balloon is then deflated to a smaller profile to allow the catheter to be withdrawn from the patient's vasculature.
A problem associated with the procedure includes formation of intimal flaps or torn arterial linings that can collapse and occlude the conduit after the balloon is deflated. Moreover, thrombosis and restenosis of the artery may develop over several months after the procedure, which may require another angioplasty procedure or a surgical by-pass operation. To reduce the partial or total occlusion of the artery by the collapse of arterial lining and to reduce the chance of the development of thrombosis and restenosis, an implantable device, an example of which includes an expandable stent, is implanted in the lumen to maintain the vascular patency. Stents are scaffoldings, usually cylindrical or tubular in shape, functioning to physically hold open, and if desired, to expand the wall of the passageway. Typically stents are compressed for insertion through small cavities via small catheters, and then expanded to a larger diameter once at the desired location. Examples in patent literature disclosing stents include U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco, and U.S. Pat. No. 4,886,062 issued to Wiktor.
A problem encountered with intravascular stents is that, once implanted into the blood stream, platelets and other blood components tend to adhere to any portion of the stent surfaces having roughness or irregularity. Adhesion and aggregation of platelets and other blood components can lead to thrombosis and restenosis. Therefore, an important aspect of manufacturing and finishing stents is ensuring that all stent surfaces are made extremely smooth, without roughness and irregularities. This is accomplished by highly polishing the entire surface of the stent material, typically by electropolishing or by using an abrasive slurry, as described in U.S. Pat. No 5,746,691 titled “Method for Polishing Surgical Stents” issued to Frantzen and U.S. Pat. No. 5,788,558 “Apparatus and method for Polishing Lumenal Prostheses” issued to Klein.
To further fight against thrombosis and restenosis, and in treating the damaged vascular tissue, therapeutic substances can be administered. For example, anticoagulants, antiplatelets and cytostatic agents are commonly used to prevent thrombosis of the coronary lumen, to inhibit development of restenosis, and to reduce post-angioplasty proliferation of the vascular tissue, respectively. To provide an efficacious concentration to the treated site, systemic administration of these drugs often produces adverse or toxic side effects for the patient. Local delivery is a highly suitable method of treatment in that smaller levels of medication, as compared to systemic dosages, are concentrated at a specific site. Local delivery therefore produces fewer side effects and achieves more effective results.
One commonly applied technique for the local delivery of therapeutic substances is through the use of medicated stents. A well-known method for medicating stents involves the use of a polymeric carrier coated onto the body of the stent, as disclosed in U.S. Pat. No. 5,464,650 issued to Berg et al., U.S. Pat. No. 5,605,696 issued to Eury et al., U.S. Pat. No. 5,865,814 issued to Tuch, and U.S. Pat. No. 5,700,286 issued to Tartaglia et al. The therapeutic substances are impregnated in, located on, or provided underneath the polymeric coating for release in situ once the stent has been implanted.
An obstacle often encountered with the use of stent coatings is poor adhesion of the polymeric coating to the surface of a stent. During stent delivery, a poorly adhering coating can be rubbed and peeled off of the stent if the coating contacts an arterial wall while the stent is being moved into position. Also, when a coated stent is expanded in situ, the distortion the stent undergoes as it expands can cause the coating to peel, crack, or tear, and disengage from the stent. Poor adhesion of the coating material can promote thrombosis and restenosis, by providing additional surfaces for platelets and other blood components to adhere. Additionally, poor adhesion and loss of the coating also leads to loss of a significant amount of the drugs to be delivered from the coating.
Another technical challenge in using stent coatings to deliver drugs is loading enough drug onto the stent, so that an effective amount of the drug or drug combination is delivered to the treatment site. The total amount of a drug that can be loaded onto a stent in a polymeric coating is limited by the amount of drug that can be mixed into the polymer (the concentration of the drug in the polymer), and the amount of polymer and drug mixture that can be coated onto the stent (the thickness of the coating on the stent for a given stent size). Therefore, a stent that carries more coating can deliver greater amounts of drugs. However, increasing the thickness of a stent coating can be difficult, particularly if the coating does not adhere well to the stent material.
When delivering drugs from a stent, it is also desirable to control the timing and rate of release of the drugs being delivered. Controlled release can be achieved by coating a stent with a number of layers. For instance, each layer can contain a different drug or be made of a polymer that releases drugs at different rates. However, additional layers tend to adhere poorly to underlying layers. The additional layers peel off either during application of the additional layer over an underlying layer, or, as described above, when the stent is delivered and expanded within the artery.
Another complication for drug delivery from a stent is that the arterial wall tissue the stent is compressed against can be tough and fibrotic, preventing medication released from the stent from penetrating the tissue in which the medication may be therapeutically beneficial.
SUMMARY
An implantable medical device capable of delivering therapeutic substances from a coating is provided, which provides a high retention of one or more layers of coating material. The implantable device also allows a greater total amount of coating to be carried by the device, allowing for greater amounts of therapeutic substances to be delivered from the device. In some embodiments the implantable device can penetrate the arterial wall to enhance delivery of therapeutic substances into the arterial wall.
In one embodiment within the present invention, the implantable medical device has a generally tubular structure with an inner surface and an outer surface. The outer surface has asperities on designated regions that have roughness factors, Ra, of greater than 40 nm. The designated regions can be the entire outer surface, a middle section of the outer surface, or ends of the outer surface. Typically, the inner surface is smooth.
In various embodiments, the outer surface, or portion thereof, can be coated with a coating containing a therapeutic substance or substances, a polymer, or a combination of therapeutic substances and polymer. The coating can be made of one or more layers and the layers can hold different therapeutic substances, polymers, or combination of therapeutic substances and polymers.
The asperities may have surface protrusions and indentations of v

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surface features of an implantable medical device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surface features of an implantable medical device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface features of an implantable medical device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3292848

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.