Brushing – scrubbing – and general cleaning – Machines – With air blast or suction
Reexamination Certificate
1999-03-30
2001-02-20
Moore, Chris K. (Department: 1744)
Brushing, scrubbing, and general cleaning
Machines
With air blast or suction
C015S401000, C015S405000
Reexamination Certificate
active
06189179
ABSTRACT:
FIELD OF THE INVENTION
The present invention generally relates to apparatus for drying surfaces and, more specifically, to apparatus for drying roadways surfaces such as paved race tracks.
BACKGROUND OF THE INVENTION
Numerous racing events occur outdoors on paved race tracks throughout the year. These racing events take place in various open-air venues including, for example, oval or circular raceways, closed-circuit road courses, and drag strips to name a few. Generally, these racing events are scheduled for a particular day and are planned several months, if not years, in advance. Rescheduling or canceling a race scheduled for a particular day for any reason usually means a big disappointment for the race fans and racing teams as well as being costly to the race organizers.
One common reason to delay or cancel a scheduled race event is unfavorable weather conditions such as falling rain or standing rain water on the race surface. Because most race cars are designed to operate safely only on dry racing surfaces, any water on the racing surface creates a hazardous condition for both the drivers and the fans. Consequently, any water on the racing surface must be removed in a timely fashion for the racing event to safely take place on the scheduled date. Moreover, rapid removal of the water from the racing surface is critical when, for example, a race is stopped and delayed because of falling rain late during the race. If the water cannot be removed promptly after the rain ceases, the remainder of the race may have to be postponed to another day or canceled altogether.
Different techniques and machines have been used to remove water from racing surfaces all with varying degrees of success. One technique uses a train of vehicles such as pick-up trucks to parade around the race track to promote evaporation of the water. This technique is crude and costly, requiring numerous vehicles and operators and achieving only limited drying effectiveness.
In addition to the truck parade technique, various drying machines have been designed to dry racing surfaces. These drying machines can be either self-propelled units or adapted to be towed behind another vehicle. One drying machine may blow heated air alone onto the racing surface to promote evaporation. Another drying machine may use a rotating brush to sweep the water off the surface and into a collection tank. Still another drying machine may incorporate squeegees that direct the water to one side of the racing surface. While these drying machines do assist in the removal of water from the racing surface, their drying effectiveness is still insufficient to guarantee a quick restart of a race delayed by water on the racing surface.
It would be desirable, therefore, to have a surface drying machine which greatly shortens the time for removing water from a racing surface. This drying machine would be simple and inexpensive to operate, allowing a rain delayed race to continue shortly after the rain has stopped falling.
SUMMARY OF THE INVENTION
The invention is generally directed to apparatus for drying wet surfaces, and more particularly, roadway surfaces such as paved race tracks. While the drying machine is especially adapted to operate on paved race tracks, the drying machine could be readily used on other hard surfaces such as airport runways, highways, and outdoor tennis and basketball courts. The drying device has a rectangular, box-shaped housing with first and second chambers. The first chamber has a first drip pan for collecting water. The first chamber precedes the second chamber as the device traverses the surface when removing the water. At least one brush is rotatably mounted in the first chamber such that the longitudinal axis of the brush is oriented transversely to the device's direction of travel when removing water. The brush is adapted to contact the surface so as to collect water in the brush as the brush rotates. The brush is also adapted to deposit the water into the drip pan. First and second squeegees are mounted respectively to the first and second chambers for diverting water away from the surface over which the apparatus is traversing. Finally, a blower is mounted atop the housing for forcing air into the second chamber to aid evaporation of water on the surface not already collected by the brush.
As the drying device travels over a wet surface the first squeegee diverts excess water to one side of the device. This excess diverted water may be handled by either a second drying device or the same drying device making a pass adjacent to the initial pass. Water not diverted by the first squeegee is swept up by the rotating brush within the first chamber. The brush collects the water and strikes or contacts the drip pan which dislodges the water from the brush and into the drip pan. After being subjected to a squeegee and the rotating brush, the surface is substantially free of standing water, though a thin layer of water may still remain. To aid in removing this remaining layer of water from the surface, i.e., dry the surface, the blower forces heated air into the second chamber which has an open bottom. The heated air promotes evaporation of the remaining layer of water to leave an essentially dry surface. Finally, the second squeegee is affixed to the trailing edge of the second chamber to again divert any possible remaining water on the surface to one side of the drying device. As such, the combination of the squeegees, the brush, and the blower enable the drying device to quickly and efficiently remove water from surfaces, and especially, roadway surfaces such as paved race tracks.
Advantageously, a first pair of oppositely disposed wheels are operatively connected to the housing and work in cooperation with an operation hitch which is operatively connected to the housing such that the drying device may be pulled by a vehicle in a direction perpendicular to the longitudinal axis of the brush so as to remove water from the surface. In one configuration, the first pair of wheels are operatively coupled to the brush so as to turn the brush when the first pair of wheels turn. In another configuration, however, a hydraulically actuated motor is operably coupled to the brush so as to turn the brush even when the first pair of wheels is not turning. Additionally, a second set of wheels are operatively connected to the housing and oriented perpendicularly to the first set of wheels. The second set of wheels work in cooperation with a transport hitch which is detachably connected to the housing such that the apparatus may be towed by a vehicle in a direction parallel to the longitudinal axis of the brush when the device is not being used to remove water from the surface.
Alternatively, a transport hitch is pivotally connected to the housing so that the housing can be selectively rotated relative to the transport hitch such that the water removal apparatus can be towed in one of two orientations. The first orientation is parallel to the longitudinal axis of the brush. The second orientation is perpendicular to the longitudinal axis of the brush. This particular transport hitch has a pair of transport wheels, preferably steerable, disposed at one end of the transport hitch and a coupling device disposed at the other, or opposite, end of the transport hitch. In addition, the transport hitch includes a lift cylinder for lifting the housing and the wheels attached to the housing so that the housing can be selectively rotated between the first and second towing orientations.
In a preferred embodiment of the drying device two brushes are mounted for rotation within the first chamber. These brushes are aligned along a common longitudinal axis and are mounted in floating bearings such that each brush may follow the contours of the surface so as to maintain contact with the surface when removing water.
Advantageously, the first chamber additionally includes second and third drip pans which are adapted to collect water made air born by the rotation of the brush. That is, not only does the rotation of the brush cause water to b
Moore Chris K.
Saturn Machine & Welding Co. Inc.
Wood Herron & Evans L.L.P.
LandOfFree
Surface drying machine does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Surface drying machine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface drying machine will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2595217