Surface catalyst infra red laser

Coherent light generators – Particular pumping means – Chemical

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C372S060000, C372S090000, C372S055000

Reexamination Certificate

active

06678305

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to solid-state devices for converting or extracting energy from hydrocarbon-oxidizer reactions. More specifically, this invention relates to a significant improvement of the process for the efficient conversion and extraction of energy in the form of optical emissions and of coherent radiation and from reactants such as hydrocarbons, hydrogen or other combustible materials reacting on a catalyst surface with air or other oxidizers.
BACKGROUND OF THE INVENTION
One method to convert chemical reactant energy directly into useful work such as electricity uses electrochemical couples such as batteries and fuel cells. In this method, a substantial fraction of the reactant bond energies may be converted directly into electrical potential. However, the physical chemistry underlying these processes limits the rate of such conversion substantially. The result is a power per mass and power per volume that is orders of magnitude smaller than that of a mechanical engine.
Another method uses gas dynamic processes to convert chemical energy directly into a dynamic state exhibiting a population inversion. The energy is extracted from this system as coherent radiation. However, the reactants and exhausts of this method are usually dangerous and incompatible with human safety considerations. Moreover, these devices cannot be efficiently miniaturized.
Therefore, it is highly desirable to have a simpler method and system for extracting efficiently without having to use harmful products and without producing hazardous byproducts in the process.
A recent research suggests that certain simple, energetic atoms reacting on a catalytic surface produce products exhibiting a population inversion. An inverted population is the prerequisite for stimulated emission of radiation, which is one method to remove the energy from the reaction and to retain its high degree of usefulness.
One problem in the prior state of technology is the process of creating highly energetic species on the catalyst surface, such as hot atoms and mono-atomic oxygen, that 1) retain a significant amount of the chemical energy for reactions, instead of dissipating it as a heat of adsorption, and 2) that will produce an inverted population as a product of the reaction. The issue in the creation of hot atoms, such as mono-atomic oxygen, is that it usually takes more electrical energy to produce the hot atoms than can be extracted from the resulting chemical reactions.
Research has suggested that mono-atomic, energetic specie reacting with simple adsorbed specie may form vibrationally inverted products, and that this inversion may occur in many systems. For example, research has shown that when gas phase oxygen atoms react with deuterium adsorbed on a tungsten surface, OD radicals are formed in the inverted state, with the highest population appearing at vibrational level 6. This represents a substantial fraction of the available reaction energy being concentrated in the inverted state. Shin, HK, “Vibrationally Excited OD Radicals From The Reaction Of Oxygen-Atoms With Chemisorbed Deuterium On Tungsten,” Journal Of Physical Chemistry A, v. 102(#13), pp. 2372-2380, Mar. 26, 1998.
Similar research showed that gas phase atomic oxygen reacting with adsorbed hydrogen on the surface produces population inverted, OH radicals within 100 femtoseconds. Ree J, Kim YH, Shin HK, “Dynamics Of Gas-Surface Interactions: Reaction Of Atomic Oxygen With Chemisorbed Hydrogen On Tungsten,” Journal Of Physical Chemistry A, V. 101(#25), pp. 4523-4534, Jun. 19, 1997.
It was shown in Kim, M. S. and J. Ree, “Reaction of Gas-Phase Atomic Hydrogen with Chemisorbed Hydrogen Atoms on an Iron Surface,” Bulletin of the Korean Chemical Society, Volume 18, Number 9 (1997), COMMUNICATIONS, pp 985-994, that gas phase atomic hydrogen reacts with chemisorbed hydrogen on an iron surface to form population inverted, desorbed diatomic hydrogen molecules.
It is known that when atomic oxygen in the gas phase reacts with carbon monoxide adsorbed on a platinum catalyst surface, the fraction of reactive collisions producing molecules having vibrational energies corresponding to levels v3=9 to 13 is found to be very high and exhibits a vibrational population inversion. Ree, J.; Y. H. Kim, and H. K. Shin, “Reaction of atomic oxygen with adsorbed carbon monoxide on a platinum surface,” Journal of Chemical Physics, Jan. 8, 1996, Volume 104, Issue 2, pp. 742-757. This would be useful except for the fact that the mono-atomic oxygen atoms for this reaction must be created using inefficient means, namely electric arcs.
Yet another research has shown that mono-atomic oxygen atoms can be created directly on a catalytic surface by irradiation with UV light. The most probable result of such irradiation is the production of mono-atomic oxygen atoms. The next most probable result is desorption. The issue with this approach is the low efficiency of the generation and conversion of UV light into dissociated oxygen atoms. Tripa, C. Emil, Christopher R. Arumaninayagam, John T. Yates, Jr., “Kinetics measurements of CO photo-oxidation on Pt(111),” Journal of Chemical Physics, Jul. 22, 1996, Volume 105, Issue 4, pp. 1691-1696.
A related research has also shown that oxygen molecules preferentially adsorb on the step sites of a catalyst such as platinum, and that photo generated mono-atomic oxygen atoms preferentially react with other radicals or molecules also adsorbed on the step sites. Atomic and molecular species generated by the photolysis of aligned molecules adsorbed on crystalline solids tend to move preferentially in particular directions relative to the crystal surface. For example, photo-generated mono-atomic oxygen reacts preferentially with adsorbed CO to make excited state CO2. The feature here is the efficiency of reaction of the hot atoms with other surface reactants. An issue here is the preferential production of hot atoms. Tripa, C. Emil; John T. Yates Jr, “Surface-aligned reaction of photo generated oxygen atoms with carbon monoxide targets,” Nature, Vol 398, pages 591-593 (1999) Apr. 15, 1999.
Another research showed that the UV photons create hot electrons on a catalyst metal surface and which interact strongly with adsorbed oxygen to cause the trapped oxygen atoms to dissociate or desorb. The salient point is that adsorbates trap in metastable states before they dissociate, and that hot electrons can stimulate such states efficiently. Experiments showed that gas phase oxygen molecules adsorb first as a superoxo-like specie (molecule singly charged on surface) and are then trapped in a shallow barrier of order 0.1 eV. Then the molecule may overcome the barrier and become a peroxo-like specie (doubly charged) in a barrier of order 0.5 eV. Finally, the molecule may overcome this barrier and dissociate into hot atoms. The existence of precursor phases is apparently fairly common and observed in various forms of platinum, palladium and iridium catalysts. Nolan, P. D.; B. R. Lutz, P. L. Tanaka, J. E. Davis, and C. B. Mullins, “Molecularly chemisorbed intermediates to oxygen adsorption on Pt (111): A molecular beam and electron energy-loss spectroscopy study,” Journal Of Chemical Physics Volume 111, Number 8, Aug. 22, 1999. Nolan P D, Lutz B R, Tanaka P L, Mullins C B, “Direct verification of a high-translational-energy molecular precursor to oxygen dissociation on Pd(111),” Surface Science v. 419(#1) pp. L1071-L113, Dec. 24, 1998. Nolan, P. D.; B. R. Lutz, P. L. Tanaka, J. E. Davis, and C. B. Mullins, “Translational Energy Selection of Molecular Precursors to Oxygen Adsorption on Pt(111),” Physical Review Letters, VOLUME 81, NUMBER 15 Oct. 12, 1998. Davis, J. E.; P. D. Nolan, S. G. Karseboom, and C. B. Mullins, “Kinetics and dynamics of the dissociative chemisorption of oxygen on Ir(111),” J. Chem. Phys. 107 (3), Jul. 15, 1997, pp943, 10 pages.
Inverted products can be formed by associative desorption. Experiments have shown that nitrogen molecules formed upon catalytic decomposition of ammonia (c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Surface catalyst infra red laser does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Surface catalyst infra red laser, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Surface catalyst infra red laser will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3240352

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.