Support method, quality control method, and device therefor

Data processing: measuring – calibrating – or testing – Measurement system – History logging or time stamping

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C702S019000, C702S081000, C702S084000, C702S187000, C422S003000, C422S050000, C422S062000, C422S091000, C436S008000, C436S050000, C340S500000, C340S514000, C340S523000, C709S205000, C709S213000, C709S241000

Reexamination Certificate

active

06629060

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to quality control in, and technology for facilitating support of analyzers.
2. Description of Related Art
Blood tests and other forms of clinical examination require that samples such as blood and urine be analyzed for a variety of test items. Analyzers that employ assaying methods suited to the characteristics of the analysis items perform sample assays. Analyzers have sophisticated mechanisms that allow them to assay, with a high degree of sensitivity, extremely low concentrations of a substance, and to assay trace amounts of sample for ten or more items. To maintain the accuracy of the test results, operations in each of the mechanisms are monitored.
When problems arise in operation of the mechanisms, the analyzer issues a warning to that effect, alerting the user to the problem in the analyzer. In such cases, a user will deal with the problem by following the operating manual or, for example, by calling a support center, explaining the circumstances, and following the instructions of the technician. When the user cannot take care of it single-handedly, the support center dispatches a technician to do so.
Nevertheless, in clinical testing, merely monitoring the analyzer mechanisms is insufficient for governing test results on vital components with satisfactory accuracy. Quality control is therefore performed. Samples identical with the vital components, or samples that are their analogues, are assayed as quality control substances, and the assay results are monitored.
Both internal and external methods are utilized for quality control. Internal quality control is a method of assaying identical quality control substances daily with the same analyzer, and monitoring whether stable assay results are being obtained. External quality control is a method of monitoring whether assay results are being obtained that are the same as results assayed by an identical analyzer employed outside those facilities.
In order to carry out external quality control, however, the same quality control substance has to be sent from a statistical tallying center to each facility; the quality control substance has to be assayed at each facility; those assay results (“sample data” hereinafter) have to be sent from each facility to the statistics center; and the sample data has to be tallied by the statistics center. This means that the facilities first learn of the external quality control results when the tally is sent back from the statistics center. From the time the quality control substance is sent out until the time the tally is returned routinely takes one to two months. Sometimes it is necessary to wait until the statistics center accumulates a set number of sample data returns.
A first issue the invention addresses relates to measures taken when trouble has arisen. Because the today's analyzers are operated under the control of sophisticated programs, instances in which a user is unable to cope with the problem single-handedly are increasing. When such is the case, the user has to wait until a technician identifies the problem.
The only option is to wait for the technician's visit if a systematic problem can only be resolved by changing out or adjusting an analyzer component. Nevertheless, these are not the only reasons users cannot cope with breakdowns single-handedly. There appear to be many cases in which users ought to be able to resolve the trouble on their own. In some instances, the trouble in the analyzer is not resolved because the user cannot adequately explain the status of the problem; in others, the user cannot properly carry out the analyzer operations necessary to resolve the trouble.
Because assay is not possible while an analyzer is down, patient test results in clinical examination cannot be reported to the diagnosing physician. For samples like blood with low preservation stability, assaying the following day would mean lower accuracy test results, and therefore blood has to be drawn from the patient again.
A second issue the invention addresses is that with external quality control, as described above, confirmation is only by waiting for the tally from the statistics center. This normally is done once a year, and at most on the order of only three or four times a year.
To raise the reliability of assay data per se, quality control by definition should be carried out and the results checked before each day's sample assays. In other words, if the quality control sample data falls outside a predetermined range, this can mean that something has gone wrong and that the analyzer is not in sufficient working order. Sample assay should be carried out following adjustment of the analyzer to bring the data within the predetermined range. With current external quality control, however, the tally results come back one or two months after assay, and are used for no more than confirming after-the-fact the status of the device at the time assay was made.
Wherein a substance such as blood that is liable to transform (denature) over time is the assay subject, the freshness of the quality control substance employed in the sample data assay must be at the same level among each of the facilities taking part in external quality control. When quality control substances are sent out to facilities to collect sample data, inevitably the assaying days have a propensity to be diverse. Herein, because the freshness of the quality control substances that are the basis for the sample data collected tends to vary, the reliability of the tally results is diminished.
SUMMARY OF THE INVENTION
It is an object of the present invention to enable rapid, exact resolution of analyzer problems and effective external quality control.
To address the foregoing first issue, an aspect of the present invention presents a support method employed in an information terminal connected to analyzers via a network, the support method comprising: collecting from the analyzers via the network predetermined log information indicating the operational history of the analyzers; storing the collected log information for each analyzer; and outputting the collected log information in response to instruction by the operator of the information terminal.
Communication between the information terminal and the analyzers is performed through a dedicated telephone line (in Japan, for example, an NTT line), the Internet or the like. The operational history of each analyzer can be seen by support personnel at, for example, a support center, and this can prevent analyzers from being down and can facilitate repair work. Collecting log information by SMTP (Simple Mail Transfer Protocol) has the advantage of allowing for easy expansion of the system over a network, since SMTP is usually not subject to the restrictions of firewalls and the like.
In this information-terminal employed support method, it is preferable to operate the analyzer from the information terminal via a network.
Support personnel can operate the analyzer while looking at the analyzer operational history stored on the information terminal. When an analyzer is down, remote support personnel can quickly resolve the trouble without having to travel to the actual site, leading to a significant reduction in down time.
Furthermore, good use can be made of a user support method wherein error determination parameters are prepared in advance; predetermined error information is extracted from the log information; error histories are created by consulting (looking up) the error determination parameters; and error histories and the analyzer are correlatively stored.
For example, error level is determined based upon how many times the same occurrence occurred in one day. Along with error type, error message, date and time, and other error log information, error levels are correlated with analyzers and used in forecasting and solving trouble.
Further to address the first issue noted above, another aspect of the present invention presents a support method employed in an analyzer connected to a predete

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Support method, quality control method, and device therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Support method, quality control method, and device therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Support method, quality control method, and device therefor will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3002627

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.