Support material with low pit level

Stock material or miscellaneous articles – Structurally defined web or sheet – Continuous and nonuniform or irregular surface on layer or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S409000, C428S500000

Reexamination Certificate

active

06399180

ABSTRACT:

BACKGROUND, SUMMARY AND DESCRIPTION OF THE INVENTION
This invention concerns a resin-coated paper, in particular a support material for photographic and non-photographic imaging methods. In addition, it concerns a method of producing said support material.
In finishing papers by bonding the surface area to at least one resin layer in an extrusion or coextrusion process, the appearance and properties of the base material should be improved. This is true in particular of the increase in stiffness, tensile strength, thermal stability and insensitivity to liquids or gases. Glossy or structured surfaces can be produced by using special rollers.
The extrusion material, which is in the form of granules, grains or powder is compacted, melted and homogenized in the extruder. The molten extrusion material is applied to the substrate by means of an extrusion die, which is adapted to the width of the paper web. The paper is pretreated to achieve good bonding strength. Flame pretreatment, corona treatment, an ozone shower or primer application is used to improve adhesion. The extruded film is cooled by means of a chill roll. The surface of this chill roll also has a significant influence on the surface of the composite material.
Extrusion coating of paper, and in particular papers for photographic and non-photographic imaging processes, is performed for various reasons. The film extruded onto the paper prevents absorption of liquids, and with photographic paper it prevents uptake of the developer solutions, thereby guaranteeing rapid and environmentally friendly processing, because developer that has penetrated need not be washed out in a time-consuming process. The structure of the surface can be adapted to the desired requirements from “high gloss” to “highly structured” in a controlled manner. The structured surface of the material laminate is a mirror image of the surface of the chill roll. Chill rolls used previously in extrusion of paper are produced by chrome plating the chill roll body and then sandblasting. This forms a multitude of recesses, usually very fine, on the surface of the chill roll. Depending on the type and size of the sandblasting material and the duration of the treatment, surfaces from “high gloss” to “very matte” can be produced.
In extrusion coating of the paper, crater-like surface defects, so-called pits, are formed on the polymer surface in accordance with the extrusion rate. Due to the high rotational speed of the chill roll, air bubbles which have settled in the above-mentioned recesses in the surface of the chill roll cannot escape or be removed before the chill roll comes in contact with the hot extrusion material. The resulting pits have a negative effect on the gloss and the visual appearance. With an increase in extrusion rate, the number of pits in the resulting coating also increases. These problems are described in EP 285 146 A2.
Japanese patent application JP 7261325 describes a polyolefin-coated photographic support material with a precisely defined surface roughness to prevent pits at a production rate of at least 150 m/min. This photographic support material is characterized by a high gloss and low pit level. One disadvantage of this method is the narrow roughness range of the product. Furthermore, the production rate can be increased only to a limited extent.
EP 285 146 A2 describes a method of preventing pits or craters, by replacing the air bubbles in the depressions of the chill roll with a gas which can escape more easily through the extruded film. Here again, however, the low production rate and the great technical complexity are disadvantages.
In U.S. Pat. No. 4,994,357, pits are prevented by increasing the pressure of the polyolefin-coated paper on the chill roll. Further improvements are said to be achieved by using an especially smooth base paper and a multilayer coating of the surface with polyolefin. However, only a low production rate is possible due to the high contact pressure, because the polyolefin can separate from the chill roll at high speeds.
In addition to the photographic support material, the field of non-photographic imaging methods such as ink jet methods or thermal transfer methods must also rely on a uniform support material. In order to obtain photographic quality printings as much as possible in these methods, resin-coated papers are being used to an increasing extent. Disturbances such as pits are very apparent as spots in the gloss due to the lower application of plastic in the pit areas.
The object of the invention is to provide a resin-coated support material which is characterized by uniform surface properties and a low pit level. In addition, another object of this invention is to increase production rate while maintaining a low pit level.
These objects are achieved by a polyolefin-coated support material with a surface that is shaped with a chill roll whose surface has an electrolytically produced structure.
In producing the support material according to this invention, rolls are used which are not sandblasted for the surface treatment after being plated with chrome. By reversing the direction of the electric current in a controlled manner during electroplating, surface structures can be created in a controlled manner. These are uniformly distributed rounded elevations. Therefore, this type of chill roll differs from the previous types of chill rolls where the surface is formed by removal of material in that it is a mirror image. The chill rolls for the support materials according to this invention have a uniform roughness distribution Rz in comparison with traditional chill rolls, as shown by the standard deviations in
FIGS. 1 and 2
. The standard deviations for these chill rolls are in the range between 0.050 &mgr;m and 0.120 &mgr;m, preferably 0.060 &mgr;m to 0.100 &mgr;m. This yields a surface with a uniform gloss in extrusion. Areas with different gloss values on the surface of the support material, as with traditional chill rolls, no longer occur according to this invention. The roughness Rz of the chill roll depends on the desired gloss values of the support material, amounting to 0.800 &mgr;m to 1.900 &mgr;m, in particular 1.000 &mgr;m t o 1.700 &mgr;m.
FIG. 3
with subfigures
3
a
and
3
b
shows a paper surface (according to Comparative Example 1) produced with a traditional sandblasted roll. These photographs were made with a confocal laser microscope.
FIG. 3
b
shows a three-dimensional diagram of the paper surface. The large number of pits in the paper surface is noteworthy. This causes an increase in the number of air inclusions with an increase in extrusion rate and thus an increase in the number of pits.
FIG. 3
a
shows a view of the three-dimensional diagram corresponding to the laser micrograph in
FIG. 3
c
from Comparative Example 1.
FIG. 4
with subfigures
4
a
and
4
b
shows a paper surface (corresponding to Example 1) which was produced with a chill roll having a surface structure produced by an electrolytic method. These micrographs were also made with a confocal laser microscope under the same conditions as in FIG.
3
.
FIG. 4
b
again shows a three-dimensional diagram of the paper surface. The surface of the paper here is more homogeneous than that in
FIG. 3
b,
and the height differences based on the surface dimensions are larger and at the same time more rounded. Therefore, air can escape even at high production rates and formation of pits is thereby decreased.
FIG. 4
a
shows a top view of
FIG. 4
b
and is comparable to the laser micrograph in
FIG. 4
c.
With the support material according to this invention, the gloss, measured at an angle of 60°, is in the range of 4% to 40%, in particular in the range of 10% to 35%. After application of a photographic emulsion or a receiving layer, the gloss measured at an angle of 60° on a black pattern is in the range of 75% to 95%, in particular 80% to 90%. The roughness Rz of the support material is in the range of 0.700 &mgr;m to 1.800 &mgr;m, in particular 0.900 &mgr;m to 1.600 &mgr;m. The standard deviation in the roughness Rz o

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Support material with low pit level does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Support material with low pit level, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Support material with low pit level will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2900862

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.