Support for a track-guided high-speed vehicle

Railways – Elevated structure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C104S281000

Reexamination Certificate

active

06782832

ABSTRACT:

FIELD OF THE INVENTION
The present invention concerns a support (hereinafter “beam”) for a track guided high speed vehicle, especially a magnetically levitated railroad, wherein the beam is supported at intervals on piers and on the outer side of said beam, wherein the functional elements are placed for the guidance of a vehicle.
BACKGROUND
DE 41 15 935 C2, for example, has made known a travel-way construction for magnetically levitated railroads, in which fittings for the guidance of a vehicle are placed on a beam and directed toward the inside. The beam itself is U-shaped, when seen in cross-section. The beam is supported on piers whereby, for the better acceptance of the beam, holders are provided, in which the beams lie. The holders extend themselves around the U-shaped cross-section on the outside and thus stabilize the beam. The holders themselves are in turn supported by bearing surfaces on the piers. Disadvantageous in the case of such a travel-way is that the beam exhibits a relatively great degree of elasticity due to the open beam construction. Although the equipment placements must be exactly aligned with each other in order to guide a vehicle, with this design of the travel-way, the satisfactory stabilization of the beam and the positioning of the equipment components is only possible with the aid of the holder.
DE 38 25 508 C1 discloses a travel-way which is comprised of a hollow essentially T-shaped beam. On the outer sides of the upper flanges of the beam are placed functional elements for the guidance of a magnetically levitated vehicle. The beam itself is supported on individual piers, whereby the piers possess holders which grip the bases of the beam; Disadvantageous in the case of a beam of this type is that although the design permits far more precise positioning of the functional elements to one another than is required by the a travel-way constructed according to DE 41 15 935, in spite of this, the beam still shows a poor torsion rigidity.
This comes into effect particularly during extreme high speeds of a vehicle, such as, for instance, speeds in excess of 500 km./h, often exhibiting itself as a rough ride of a vehicle.
It is disadvantageous in the case of the above described embodiments of the state of the technology that, especially during the said high speeds of modern magnetically levitated vehicles, the-flow resistance of the beams and their supporting means prevent a smooth run of a vehicle. The holders of the beams or the piers, on which the beams are supported, cause periodic buffets on a vehicle when the pressurized air encounters their resistance.
SUMMARY
Thus one feature of the invention is to furnish, by means of an appropriate adaptation of the beam to high speed magnetically levitated railroads, a smooth and comfortable run of magnetically levitated vehicles. Additional objects and advantages will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
If the outer surface of the beam is constructed with concern given to a favorable airflow in relation to a vehicle, wherein—as seen in the longitudinal direction of the beam—no cross-sectional changes occur, and the formation of the beam predominantly covers the piers in relation to a vehicle, then in an advantageous and inventive manner the effect is that the air pushed away from a vehicle can uniformly escape. Thus a smooth run of a vehicle is assured. By means of the invented design of the beam, at the same time, a uniform comfortable run of a vehicle is effected. Because of the fact that the cross-section of the beam predominantly remains unchanged, no repeated flow impacts against a vehicle. A uniform airflow is also brought about in that in relation to a vehicle, the piers are covered and thus the support of the beam does not interfere with the escape of the pressurized air from a vehicle. This also contributes to a uniform run of a vehicle.
It is particularly an advantage, if the beam is so designed, that it possesses a lower flange, which covers the piers or shields them in a favorable manner in respect to vehicle slipstream. When this is done, because of the shaping of the basic form of the beam, the airflow at any one pier immediately slides by without impingement. In addition, or alternatively, it can be advantageous if the beam is equipped with a console essentially covering the pier which is shaped or located to be air-flow friendly.
It is an advantage, if the beam has at least one opening for the inspection of its hollow space. In this way, the accessibility and the monitoring of the reliability of the beam is easier during the regularly scheduled inspections. Personnel can enter through the opening into the interior of the beam to lay and maintain supply lines and/or communication lines which are dependent on or independent of vehicle operation. By means of these uses of the hollow space of the beam, a very economical laying of lines can be carried out. Also, lines which have nothing to do with the operation of a vehicle can be laid along the now available stretch of the magnetically levitated railroad to take advantage of a very economical kind of line running. Thus it can also be avoided that separate beams need be installed, for example for communication lines or that these lines must be laid separately underground.
Advantageously, the beam has an airflow friendly clearance space for the reception of the guide elements, which the functional units of a vehicle occupy. This clearance space is designed to follow the beam in the flange area, without essential cross-sectional changes. In this way, the escape flow of vehicle displaced air is positively influenced. Moreover, an I-beam is created which possesses a particularly high stability, torsion resistance and load capacity.
The placement of the beam on the piers is advantageously done in such a manner that the bearing elements are placed on the lower flange of the beam. The bearing elements as well as the piers are, in this way, covered over by means of the outwardly extending lower flange which covers said piers. Airflow impacts may be avoided by this measure.
A particularly advantageous mode of construction of the beams is found therein in that the beam is made of concrete, in particular out of precast concrete components. By this means, a very precise and error-free manufacture of the beam can be carried out in a fabrication plant. For instance, in this way, a dependency on weather conditions during the manufacture of the beam, such as site manufacture would entail, is avoided.
In order to attain a particularly high degree of stability of the beam, it is of advantage if the lower flange is broader than the upper flange. For the rigidity of the beam, it is of advantage if it has a bulkhead or haunches. The cross-sectional shape of the beam can, with this advantage, be made to smaller measurements but still maintain the same structural rigidity. If haunches are placed in the beam then, besides the increased rigidity, also a simple anchorage for tensioning members is created.
Where curving is concerned, the beam advantageously forms a spatial curve, in that the beam is supported about a rotation of its longitudinal axis and by means of a lengthening and/or a shortening of the cantilever arm, a radius is formed.
A further possibility for making the curve would be that the upper flange of the beam is constructed in a rotation about its longitudinal axis and by means of extending and/or shortening the cantilever arm, a radius is formed.
A spatial curve of the beam can also be constructed in that fastening consoles of the functional elements in the run of the longitudinal axis of the beam are offset vertically, and by the lengthening and/or the shortening of the fastening consoles, a radius is built.
It has been determined in an advantageous and inventive manner that the curve adjustment of the beam can be carried out quicker, more economically and more exactly, if the beam components in the arc are shorter, and thereby need less individual a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Support for a track-guided high-speed vehicle does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Support for a track-guided high-speed vehicle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Support for a track-guided high-speed vehicle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3298745

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.