Surgery – Blood drawn and replaced or treated and returned to body
Reexamination Certificate
1999-09-03
2003-10-14
Sykes, Angela D. (Department: 3762)
Surgery
Blood drawn and replaced or treated and returned to body
C206S363000
Reexamination Certificate
active
06632189
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to devices and methods for supporting operating room systems and, more typically, to devices and methods for supporting surgical circuits in a convenient and easily accessible format. The invention is particularly well-suited to enable pre-assembling of cardiopulmonary bypass circuits.
BACKGROUND OF THE INVENTION
Effective circulation and control of the patient's blood are essential to successful heart surgery. This is of particular importance in procedures where the patient is on cardiopulmonary bypass for a significant period of time during surgery. In most modern bypass procedures, blood is oxygenated, treated, and recirculated through the patient by establishing an extracorporeal cardiopulmonary bypass (CPB) circuit in which the blood is mechanically forced by a blood pump through a variety of processing or blood modifying components. A plurality of blood pumps are typically used throughout the CPB circuit to direct the flow of blood through the various CPB circuit components. Generally, the CPB circuit removes blood from the patient, oxygenates the blood, and then returns the blood to the patient. Critics of heart surgery techniques cite a number of drawbacks for procedures that rely on known extracorporeal bypass platforms or circuits.
One well-known drawback of current CPB circuits is the hemolytic effect the multiple mechanical pumps and other instruments in the circuit may have on the blood. For example, a CPB circuit has as many as six pumps for arterial delivery, cardioplegia delivery, cardiotomy suction, left ventricular or aortic root venting, assisted venous drainage, and hemoconcentration. These pumps are typically occlusive roller-type pumps which sequentially pinch and release tubing to affect the desired flow.
Another drawback with current CPB circuits is the potential for detrimental, blood/air interfaces in the long segments of tubing used for cardiotomy suction and venting. Any time blood and air meet and are transported through tubing together, foaming may occur. This foaming results in destruction of clotting factors contained in whole diluted blood circulated through the CPB circuit. This, in turn, results in the release of substances that initiate a cascade of events leading to further dysfunction of platelets, proteins, and eventually organ function in the form of an inflammatory response.
A further drawback of known CPB circuits and procedures is the extended amount of time required by a cardiac perfusionist to set up the circuit prior to performing the procedure. The components of a bypass circuit are typically individually packaged, free-standing units which need to be connected together prior to each surgical procedure. Specifically, the circuit elements must first be located, assembled, and attached to appropriate sterilized circuit tubing. Then, the entire circuit must be flushed out with an inert gas and then primed with a biocompatible fluid, such as blood or saline. The time expenditure increases the cost associated with such surgeries.
Additionally, perfusionists preferably use long lengths of tubing between components to allow for the exchange of bypass components should one of them fail. Furthermore, long lengths of tubing are required to connect venting cannulas and suction tips located in the operative field to blood pumps which then propel the patient's blood to the cardiotomy reservoir for processing and return to the patient. The excess tubing creates excess tubing volume that must be accounted for by using additional blood or saline when the system is being primed. However, it is in the patient's best interest to retain the maximum volume of blood within the body, and excessive dilution of the blood can be harmful. Therefore, the need of the perfusionist for long tubing lengths may not be in the best interest of the patient.
Because of the drawbacks associated with conventional CPB circuits, there is a need for improved methods and apparatuses for performing extracorporeal bypass procedures. In particular, there is a need for an improved CPB circuit that reduces trauma to the blood being processed, reduces the time spent by a perfusionist during setup, provides for reliable access to the vasculature, minimizes the risk of infection to the patient by reducing the number of handmade connections required during assembly and setup, and desirably requires only minor modifications to present procedures.
SUMMARY OF THE INVENTION
The present invention also provides improved systems, methods, and kits for creating and establishing a bypass circuit for use in a variety of extracorporeal procedures such as cardiopulmonary bypass and the like. The improved system of the present invention advantageously allows a user to assemble the system prior to the bypass procedure with minimal setup time. In particular, the present invention provides methods and apparatuses that combine the advantages of putting a patient on cardiopulmonary bypass with the advantages of reduced blood damage (e.g., minimal hemodilution, minimal hemolysis, and preservation of clotting factors).
A further aspect of the present invention is a system provided in a package that can be adapted to use traditional bypass circuit components. The system preferably reduces the total amount of blood and foreign surface contact, thus reducing the potential for foaming which may destroy clotting factors in the blood. Although the present invention provides advantages in the context of practically all bypass procedures, the invention finds particular use with minimally invasive surgical techniques to minimize patient trauma due to surgery and post-operative effects related to blood bypass.
The present invention also lends itself well in the role of a backup support system for “beating heart” coronary artery bypass procedures known by the acronyms OP-CAB or MID-CAB. These procedures utilize extracorporeal bypass support only in the event of patient instability. The circuit is made available in the operating room, but may not be used. This requires the perfusionist to set up the pump system and dedicate a bypass system prior to the patient need in the event bypass is required, which increases the cost dramatically. Alternatively, the components are made available, and the perfusionist must rapidly connect them into a working system under great pressure. The latter solution increases the patient risk and stress on the medical personnel. In contrast, the present invention permits the entire circuit to be made available in the operating room to be ready at a moments notice, but still remain in the original packaging so that if it is not needed, it is not expended.
In one aspect, the present invention provides a support device for surgical systems including a chassis adapted to support and display in a predetermined arrangement a plurality of interrelated surgical system components. The chassis may comprise a generally planar body having a plurality of openings therein for supporting and displaying the surgical system components. Preferably, the planar body is flexible and includes a plurality of tabs formed by cuts therein. The tabs are bendable from the plane of the planar body and are adapted to releasably retain the surgical system components.
In another aspect, the present invention provides a pre-assembled surgical system comprising a plurality of interrelated surgical system components and a chassis. The surgical system components are supported and displayed by the chassis in a predetermined arrangement. If the surgical system is a circuit, such as cardiopulmonary bypass circuit, the system further includes a plurality of tubes for interconnecting the system components. At least some of the tubes are initially disconnected in the pre-assembled system. The chassis desirably includes a plurality of openings for receiving the surgical system components, and a plurality of retainers provided on the chassis adjacent the openings for retaining the components in the openings.
In a further aspect, a method of setting up a cardiop
Fallen David M.
Long Stuart G.
Martinet Alphonse
Cumberbatch Guy L.
Deak Leslie
Edwards Lifesciences Corporation
James John Christopher
Sykes Angela D.
LandOfFree
Support device for surgical systems does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Support device for surgical systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Support device for surgical systems will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3149812