Supply valve and diaphragm for a pneumatically-operated gas...

Surgery – Respiratory method or device – Means for supplying respiratory gas under positive pressure

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C128S204180

Reexamination Certificate

active

06318366

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to respiratory equipment and, in particular, to a supply valve and diaphragm for a pneumatically-operated gas demand apparatus of a type which is coupled in interruptible fluid communication between a recipient and at least one source of a pressurized gas and which is adapted for controlling delivery of the pressurized gas to the recipient as the recipient inhales and exhales.
BACKGROUND OF THE INVENTION
Many medical patients suffering from any one of a variety of lung ailments are often prescribed supplemental oxygen therapy so that the patient could breath oxygen-enriched air throughout the day and sometimes throughout the night. Earlier supplemental oxygen therapy employed a nasal cannula system operably connected between a tank of compressed oxygen and the patient's nose. Oxygen was continuously delivered to the patient throughout the patient's entire breathing cycle. This method of continuously delivering oxygen to the patient throughout the patient's breathing cycle was considered wasteful because much of the oxygen dissipated into the ambient air environment. Better methods of delivering oxygen to the patient were later developed which included improved equipment that would only deliver oxygen to the patient during the inhalation phase of the patient's breathing cycle. Usually, this improved equipment employed a demand valve which opened to deliver supplemental oxygen to the patient only when the patient inhaled. Numerous types of demand valves are well known in the prior art.
One such demand valve is described in U.S. Pat. No. 5,360,000 to Carter. This demand valve is compact, simplified and totally pneumatic. The demand valve which is coupled between a source of pressurized gas such as oxygen and the patient includes a valve body having a gas flow passageway and pneumatically-coupled sensing and slave diaphragms. The slave diaphragm is interposed in the gas flow passageway and prevents gas from flowing during the exhalation phase of the patient's respiratory cycle. During inhalation, which is sensed by a sensing diaphragm, the slave diaphragm moves to open the gas flow passageway, thus permitting flow of gas to the patient.
U.S. Pat. No. 5,666,945 to Davenport, the disclosure of which is incorporated herein by reference, describes a pneumatically-operated gas demand apparatus which overcomes many of the deficiencies of prior devices. The Davenport apparatus includes cooperating supply and sensing valves in interruptible fluid communication between a recipient (or patient) and at least a first source of pressurized gas. The supply valve includes a supply valve housing with a first diaphragm member disposed therein. Similarly, the sensing valve includes a sensing valve housing and a second diaphragm member disposed therein. The Davenport apparatus is constructed such that, when recipient inhales, the second diaphragm member assumes a flow-causing position and the first diaphragm member assumes a flow-supplying position whereby pressurized respiratory gas is delivered to the recipient. When the recipient exhales, the second diaphragm member assumes a flow-stopping position and the first diaphragm member assumes a flow-blocking position, thereby preventing delivery of the respiratory gas to the recipient.
The Davenport apparatus performs its intended functions quite effectively. However, its supply (or pilot) valve is somewhat complicated in design, labor-intensive in construction and susceptible to gas leaks. The supply valve housing comprises first and second housing parts including cooperating passageways for providing fluid communication between the supply valve and the sensing valve. As presently constructed, both the first and second housing parts must be drilled or bored to create portions of a first of the passageways. An O-ring or similar sealing means must be provided at the juncture of the first passageway portions in order to prevent respiratory gas leakage from between the first and second housing parts. At least one of the first and second housing parts must also be counterbored to accommodate the O-ring. The second housing part is radially drilled or bored to produce a second passageway which intersects the first passageway. After formation, the second passageway must be plugged or otherwise sealed from the ambient atmosphere. So constructed, the plug represents another site from, through or around which respiratory gas may leak from the valve housing. The many construction steps of the Davenport supply valve, coupled with its potential for gas leakage at more than one site, render the valve somewhat onerous to assemble and less than optimal from a performance perspective.
An advantage exists, therefore, for a supply valve for a pneumatically-operated gas demand apparatus which is simple in design, easily fabricated and assembled and resistant to gas leakage.
OBJECTS AND SUMMARY OF THE INVENTION
An object of the present invention is to provide a supply valve and diaphragm for a pneumatically-operated gas demand apparatus of a type which is coupled in interruptible fluid communication between a recipient/patient and at least one source of pressurized respiratory gas such as oxygen and which is operable to control delivery of oxygen or other respiratory gas to the recipient/patient as the recipient inhales and exhales while minimizing wastage of the respiratory gas.
Another object of the present invention is to provide a supply valve and diaphragm for a pneumatically-operated gas demand apparatus which is compact, simple in design, leak resistant and which may be constructed easily and cost effectively.
Accordingly, a supply valve and diaphragm for a pneumatically-operated gas demand apparatus of the present invention is hereinafter described. A pneumatically-operated gas demand apparatus is typically coupled in interruptible fluid communication between a recipient (or patient) and a first source of a pressurized first gas and is adapted for controlling delivery of the first gas to the recipient as the recipient inhales and exhales. In its broadest form, such apparatus, like that disclosed in U.S. Pat. No. 5,666,945 to Davenport, includes a supply valve and a sensing valve. The supply valve includes a supply valve housing and a flexible first diaphragm member. The supply valve housing defines a first interior chamber formed therein. The first diaphragm member is disposed within the first interior chamber and is connected to the supply valve housing in a manner to divide the first interior chamber into a supply chamber region and a control chamber region. The supply chamber region is in interruptible fluid communication with and between the first source of the first gas and the recipient and the control chamber region is in continuous fluid communication with either the first source of pressurized gas or a second source of a pressurized second gas. The first diaphragm member is operative to hermetically seal the supply chamber region and the control chamber region from one another and is operative to move between a flow-blocking position and a flow-supplying position.
The sensing valve includes a sensing valve housing and a flexible second diaphragm member. The sensing valve housing defines a second interior chamber formed therein. The second diaphragm member is disposed within the second interior chamber and is connected to the sensing valve housing in a manner to divide the second interior chamber into a venting chamber region and a sensing chamber region. The venting chamber region is in interruptible fluid communication with and between the control chamber region of the first interior chamber of the supply valve and an ambient air environment and the sensing chamber region is in continuous fluid communication with the recipient. The second diaphragm member is operative to hermetically seal the venting chamber region and the sensing chamber region from one another and is responsive, when the recipient inhales and exhales, to move between a flow-stopping position and a f

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Supply valve and diaphragm for a pneumatically-operated gas... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Supply valve and diaphragm for a pneumatically-operated gas..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Supply valve and diaphragm for a pneumatically-operated gas... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2590498

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.