Superoxide dismutase or superoxide dismutase mimic coating...

Stock material or miscellaneous articles – Composite – Including interfacial reaction product of adjacent layers

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S425900, C428S473500, C428S413000, C428S500000, C428S524000, C623S001110, C623S001440, C623S001460, C623S001490, C623S001390, C623S926000, C623S023640, C623S023700, C604S507000, C604S508000

Reexamination Certificate

active

06541116

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to the field of therapeutic, diagnostic, or hydrophilic coatings for intracorporeal medical devices.
The use of a medical device within a patient may be facilitated by the presence of a therapeutic, diagnostic, or hydrophilic agent on the device surface. For example, intravascular devices, such as catheters and guidewires, are more easily maneuvered within a patient's vasculature when the friction between the walls of the vessel and the intravascular device is reduced. The friction may be reduced by coating the device with a hydrophilic compound which becomes slippery after adsorbing an appreciable amount of water. Consequently, the hydrophilic coating provides lubricity when the coated device is exposed to aqueous solution, as when the coated device is exposed to water prior to insertion in the patient or to the patient's blood during use. Alternatively, coatings, such as fluoropolymers, and silicone, provide lubricity to the surface of an intracorporeal device without the need for exposure to aqueous solution. However, the degree of lubricity may vary greatly depending on the nature of the lubricious coating. Hydrophilic coatings provide superior lubricity compared to hydrophobic coatings, such as silicone, when tested against a biological tissue countersurface.
In addition to lowering the coefficient of friction of the coated device, an effective lubricious coating must strongly adhere to the device surface. The lubricious coating should remain adhered to the device surface during potentially extended periods of storage, as well as in response to abrasive forces encountered during preparation and use. Poor adhesive strength is undesirable because the lost coating may be left behind inside the patient during use, with detrimental affects and a corresponding decrease in the lubricity of the device. Typically, a trade off exists between a coating's lubricity and the coating's adhesive and cohesive strength, so that attempts to increase the adhesive strength of lubricious coatings may inadvertently decrease the lubricity of the coating. Consequently, one difficulty has been providing a highly lubricious coating that strongly adheres to a device surface.
In angioplasty procedures, there may be restenosis of the artery, i.e. reformation of the arterial blockage, which necessitates either another angioplasty procedure, or some other method of repairing or strengthening the dilated area. One difficulty has been the treatment of restenosis following an angioplasty procedure. Various medical devices, such as stents or catheters, have been coated with therapeutic or diagnostic agents, to provide localized and possibly extended exposure of the tissue to the agent. For example, drugs which prevent the proliferation of smooth muscle cells, or which promote the attachment of endothelial cells, can be coated on a stent which is then implanted at the site of a stenosis within a patient's blood vessel, to thereby inhibit restenosis following an angioplasty or stent implantation procedure. However, the agent must be strongly adhered to the device surface for effective delivery within the patient. Moreover, controlled release of the agent from the device surface within the patient may be required as part of the therapeutic or diagnostic regime.
Another therapeutic challenge is the stabilization of vulnerable plaque. The term “vulnerable plaque” refers to an atherosclerotic plaque which may rupture and/or erode, with subsequent thrombosis. The most common type of vulnerable plaque contains a core filled with lipid, cholesterol crystals and cholesterol esters, macrophages, and other cells, having a fibrous cap which can become weakened. When ruptured, the luminal blood becomes exposed to highly thrombogenic core material, such as tissue factor (TF), which can result in total thrombotic occlusion of the artery. There is increasing evidence that the propensity of an atherosclerotic plaque to rupture is related to activity of matrix metalloproteinases (MMPs), largely synthesized by macrophage-derived foam cells. Specifically, MMPs may degrade extracellular matrix proteins such as Types I and III collagen which are a signifcant source of fibrous cap structural integrity. Thus, chronic and/or local inflammation, typically a result of monocyte adhesion, in the plaque can lead to destabilization of these vulnerable plaques and lead to acute coronary syndromes (via thrombosis).
It would be a significant advance to provide a hydrophilic coating which strongly adheres to a surface of a medical device, or a therapeutic or diagnostic coating strongly, but potentially releasably, adhered to the surface of a medical device. The present invention satisfies these and other needs.
SUMMARY OF THE INVENTION
The invention is directed to a method of providing a coating on an intracorporeal medical device, and the coated medical device, or component thereof, produced thereby. A durable coating is provided on the medical device which modifies the device surface with a therapeutic, diagnostic, lubricious or other active agent. The coating of the invention may be used on a variety of medical devices including stents, catheters, guidewires, cardiac pacing leads, vascular grafts, and the like.
In one embodiment, the coating on the intracorporeal medical device generally includes a base coat and a top coat. The base coat has a binding component and a grafting component, and is used to strongly adhere to the surface of the device and also to strongly bond to the top coat. Specifically, the binding component binds to both the top coat and to the grafting component, and the grafting component adheres to the device surface. The base coat containing the grafting component and binding component in a suitable carrier such as a solution is first applied to the surface of the device. The base coat is preferably polymerized, e.g., exposed to polymerizing radiation to polymerize the grafting component, and the grafting component is bonded to the binding component and adhered to the surface of the device to form a base coat on the device. The device is then coated with a top coat containing a desired therapeutic, diagnostic, or hydrophilic agent. The top coat may be applied in a solution which is allowed to evaporate, to form a top coat with a therapeutic, diagnostic, or hydrophilic agent. In another embodiment, the device is coated with a top coat comprising a linking agent, and the linking agent is exposed to the therapeutic, diagnostic, or hydrophilic agent to form a complex therewith, to thereby form the therapeutic, diagnostic or hydrophilic coating of the invention. Because the top coat bonds to the base coat, the therapeutic, diagnostic, or hydrophilic coating produced will not readily wear off.
In one embodiment, the base coat comprises a binding component which is a homofunctional compound having homofunctional groups which covalently bond to functional groups in the top coat. In a preferred embodiment, the homofunctional binding component is grafted to the grafting component by a hydrogen abstraction mechanism, in which the grafting component is activated by initiators and covalently bonds to the binding component. In another embodiment, the base coat comprises a binding component which is a heterofunctional compound having a first functional group for covalently bonding with the grafting component, and a second functional group for covalently bonding to functional groups in the top coat.
As mentioned above, the binding component of the base coat bonds to the top coat. In one embodiment, the therapeutic, diagnostic, hydrophilic or other active agent has functional groups which directly bond to functional groups of the binding component. In another embodiment, the therapeutic, diagnostic, or hydrophilic agent is bound to the binding component by a linking agent in the top coat. The linking agent may inherently have functional groups, or may be modified to include functional groups, which bond to functional groups of the binding component. The linking

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Superoxide dismutase or superoxide dismutase mimic coating... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Superoxide dismutase or superoxide dismutase mimic coating..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Superoxide dismutase or superoxide dismutase mimic coating... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3043804

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.