Supercritical point drying apparatus for semiconductor...

Drying and gas or vapor contact with solids – Apparatus – With automatic control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C034S558000, C034S232000, C034S233000, C034S337000, C034S340000

Reexamination Certificate

active

06678968

ABSTRACT:

BACKGROUND OF THE PRESENT INVENTION
1. Technical Field of the Present Invention
This present invention relates to improvements in critical point dryers for sample preparation for electron microscopy and semiconductor wafer manufacturing and especially to a computer controlled critical point drying apparatus. The present invention is embodied in a method for remotely viewing a critical point drying apparatus using a computer system, a computer system for implementing the method of remotely viewing the critical point drying apparatus, and a computer program product bearing software instructions that implement the method of remotely viewing the critical point drying apparatus.
2. Description of the Related Art
The following references provide useful background information on the indicated topics, all of which relate to the present invention, and are incorporated herein by reference:
U.S. Pat. No. 4055,904 issued to Home on Nov. 1, 1977 describes an automatic method of operating the purge and bleed modes for a critical point dryer.
U.S. Pat. No. 4,104,808 issued to Home et al. on Aug. 8, 1978 describes a critical point dryer wherein the purge and bleed modes are controlled semi-automatically.
There will now be provided a discussion of various topics to provide a proper foundation for understanding the present invention.
In order to examine biological specimens under a scanning electron microscope, the biological specimens must be completely dried and coated with a thin conductive layer. It is important that the drying process be accomplished without disturbing the microstructure of the biological specimen to be examined. Depending upon the biological specimen's structure, three techniques are available for drying the biological specimen. The first method is air drying by evaporation of the cellular water. While suitable for bacteria or other rigid structures, this method is detrimental to the structures of many biological specimens. The surface tension forces, which turn a grape into a raisin during the drying process, cause sufficient distortion in the cell structure of many biological specimens thereby rendering them useless. The second method is sublimation or freeze-drying. This method is useful only for very small specimens. Additionally, unless the lengthy technique is followed precisely, structural damage from thermal expansion or ice crystal formation often results. The third method utilized is the phase transitional or critical point drying which produces consistently reproducible results without the drawbacks of the preceding two methods.
Along with being used to prepare specimens for the scanning electron microscope, critical point drying may also be used in the production of MEMS (Micro-Electro-Mechanical Systems) devices. The critical point drying process helps for a sticktion free release of microstructers in the MEMS device.
In critical point drying, a dehydrating fluid such as ethanol or acetone gradually replaces the water contained in a specimen. This maintains the three-dimensional hydrated morphology of the structure under study. However, if the ethanol or acetone evaporates, surface tension forces would cause structural damage and destroy the specimen's usefulness.
Critical point drying devices for sample preparation in electron microscopy are known in the art. The prior art critical point dryers utilize the technique of substituting a transitional fluid for the dehydrating fluid in the cell structure and then removing the transitional fluid. A critical point dryer heats and pressurizes the biological specimen until above the critical pressure and critical temperature. The critical temperature is defined as the temperature above which a gas cannot be liquefied by pressure alone. The critical pressure is the pressure that results when a substance exists as a gas and a liquid in equilibrium at the critical temperature. The critical point of a liquid is when its temperature and pressure are at or above the critical temperature and pressure and the densities of the liquid phase and vapor phase are identical. This critical point is characterized by an absence of phase boundaries that normally exist between a liquid and its vapor at temperatures and pressures below the critical point. This absence of a phase boundary eliminates the boundary forces that exist when changing a liquid to a gas. These boundary forces often cause the destruction of the extremely delicate specimens when changing its internal liquid to a gas below the critical point. Therefore, the solution which is applied in a critical point drying process is to remove the internal liquid from the biological specimen above its critical pressure and temperature to eliminate the boundary force destruction that would otherwise result.
Although all fluids have a characteristic critical point which should allow direct removal without the use of dehydrating or transitional fluids, the critical point temperature and pressure of water is 374.2° C. and 218 atmospheres. Achieving these temperatures and pressures would cause severe damage to most biological specimens and therefore a fluid having a lower critical temperature and pressure is normally substituted. Commonly, a dehydrating fluid is used that is miscible with water (e.g., ethanol or acetone) as an intermediate stage between the specimen containing water and a specimen containing transitional fluid.
Typically, and in the prior art dryers, the transitional fluid commonly used is carbon dioxide (CO
2
) because it is easy to use, more economical, less noxious and provides consistently better results than other transitional fluids. The critical temperature and pressure of carbon dioxide is 31° C. and 1,072 psi, respectively, thus reducing the potential for destruction of the specimen structure.
The known instruments and apparatuses for critical point drying of biological specimens include, of course, a drying chamber that is connected a supply of the transitional fluid with various regulating valves, temperature gauges and a means for heating the chamber. A skilled technician must carefully control the application, heating, pressurizing and removal of the transitional fluid, thus requiring not only time but also constant attention.
SUMMARY OF THE PRESENT INVENTION
The present invention has been made in view of the above circumstances and is intended to overcome the above problems and limitations of the prior art.
Additional aspects and advantages of the present invention will be set forth in part in the description that follows and in part will be obvious from the description, or may be learned by practice of the present invention. The aspects and advantages of the present invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
According to a first aspect of the invention, a critical point drying chamber for drying specimens comprising a chamber and at least one heater is provided. The apparatus further comprises a first valve assembly that supplies a cooling fluid to the chamber. The apparatus further comprises a second valve assembly that supplies a transitional fluid having a critical point temperature and critical point pressure to the chamber. The apparatus further comprises a third valve assembly that allows an intermediary fluid to be purged from the chamber. The apparatus further comprises a fourth valve assembly that bleeds the transitional fluid from the chamber. The apparatus further comprises a condenser collector that collects intermediary fluid exiting the third valve assembly.
According to a second aspect of the invention, a critical point drying apparatus for drying specimens comprises a cylindrical drying chamber having concave end portions and at least one heater. The apparatus further comprises a first valve assembly that supplies a cooling fluid to the drying chamber. The apparatus further comprises a second valve assembly that supplies a transitional fluid having a critical point temperature and critical point pressure to the drying chamber. The a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Supercritical point drying apparatus for semiconductor... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Supercritical point drying apparatus for semiconductor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Supercritical point drying apparatus for semiconductor... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3190631

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.