Superconductor-based processing

Superconductor technology: apparatus – material – process – High temperature devices – systems – apparatus – com- ponents,... – Significant cryogenic refrigeration system having...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C505S211000, C062S051100, C062S048100, C335S216000

Reexamination Certificate

active

06501970

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a process based on application of a superconductor or high (critical) temperature superconductor ((HT) superconductor) to an external force generated by a field selected from the group consisting of an electric field, a magnetic field, an electromagnetic field and a gravitational field and to control the resulting heat balance by accommodating an energy excluding diffusion of said energy from or into an environment of said process thereby overcoming the rudimentary state-of-the-art of the first generation of (HT) superconductor-based devices by using at least one closed vessel having at least one valve, wherein the at least one closed vessel is designed to isolate a liquid chill agent of the at least one superconductor and a chill gas atmosphere coexisting with said liquid chill agent from an external atmosphere during said application. The process is optionally designed to be operated under isolation from heat conduction from environmental objects into the at least one closed vessel or dewar by levitation exploring the diamagnetism of the at least one superconductor. Energy accommodated is released stepwise by way of a partial chill gas mass per unit operating time or per operating time intervall, i.e. &dgr;dm
V
0
/&dgr;t. The invention allows to render a true service based on process-oriented technological solutions for the control of the heat balance of a true life application of a (HT) superconductor-based process.
2. Description of the Prior Art
Processing exploring the unique properties of an (high temperature) supraconductor ((HT) superconductor) has yet been limited to the triviality of a loading procedure of liquid nitrogen or derivatives (denoted as LN2 in the following) into a metal box as to the regular water intake of a steam-driven locomotive in the old days (cf. U.S. Pat. No. 5,375,531, col. 10, lines 60 to 66): “By means of cooling medium feed stations installed along a track, . . . cooling medium feed can be simple by a flow of drops . . . ”). That is: processing (HT) superconductor-based application is yet as simple as “a comparatively simple structure of a combination of magnets and superconductors and complicated magnetic field control for supporting levitation is not required.” (see U.S. Pat. No. 5,375,531, col. 1, lines 42-45).
Being overwhelmed by so much simplicity, no apparatus has yet earned the credentials of allowing, providing or even facilitating a real life process based on the properties of a (HT) superconductor. A single apparatus has yet not advanced to a process (cf. independent claims
1
,
2
,
4
,
6
and
8
of U.S. Pat. No. 5,287,026) as much as a combination of three or even more devices can not stand a chance for a process based on application of a superconductor just by having certain features (independent claims
1
,
18
,
19
,
20
and
22
of U.S. Pat. No. 5,375,531). Features are yet limited to having a “cooling device” (cf. claim 1 in U.S. Pat. No. 5,287,026) or “means of cooling” (dependent claim 7 in U.S. Pat. No. 5,375,531) to eventually assure that more than one superconductor (element) becomes coolable independently (independent claim 22 of U.S. Pat. No. 5,375,531).
Prior art does not consider to subject a (HT) superconductor to sustainable real life applications. As shall be analyzed below toward a first (HT) superconductor-based processing on record, the maintenance of the unique state of superconductivity (which represents the number one condition for any (HT) superconductor-based processing) versus any incoming heat energy, dQ
i
, has yet been compensated for by exploring the enthalpy of evaporation of LN2, &Dgr;H
V
This follows the relationship &Sgr;dQ
i
=&Dgr;H
V
and it is hence only consequent that not a single origin of dQ
i
in running a (HT) superconductor-based apparatus has yet been disclosed with or without teaching ambiguities about processing conditions involved. The discussion of prior art in U.S. Pat. Nos. 5,287,026 and 5,375,531 themselves reveals the limited depth of corresponding inventions.
Hitachi disclose five embodiments (U.S. Pat. No. 5,287,026) of a superconducting magnetic levitation apparatus comprising evaporation into an undefined environment X of a liquid cooling agent to chill a high temperature superconductor ((HT) superconductor) below critical temperature T
c
, wherein said environment comprises a track having one or more permanent magnets for the movement of said apparatus. One embodiment discloses a vacuum chamber which is kept by a refrigerating machine at a temperature below the critical temperature T
c
of said (HT) superconductor so that the operating conditions of said chamber are directly coupled to the operating conditions of said chill agent for maintenance of an illdefined superconducting state of said apparatus accommodated by said chamber and vice versa. For example, one can not exclude the environment of the (HT) superconductor chill system to contain a partial over- or underpressure due to excessive escape of corresponding chill agent or oxygen from said apparatus, wherein said partial over- or underpressure can exceed a critical thresholds for controlling a process based on said apparatus. This holds particular true because there was no disclosure of a pressure or temperature of a non-condensed material which both form important variables for processing under any conditions, whether non-adiabatic or adiabatic and being subjected to real requirements or wishful thinking.
For example, an open box containing LN2 or a chilled system exposed to an undefined environment X does not provide an adiabatic apparatus, whether this apparatus comprises insulating shielding or not (see U.S. Pat. No. 5,375,531, col. 14, line 47). Also in U.S. Pat. No. 5,375,531, the embodiments require LN2 to be dropped naturally into an open box accommodating (HT) superconductor in order to assure that a levitation body can run for many hours. The embodiments by Hitachi represent very impractical solutions for a process in real life in which usually an operation was required to be performed under a controlled atmosphere or at an ambient temperature or employing both options independent on the boundary conditions required to accommodate said apparatus by an atmosphere, whether said atmosphere is accommodated itself by an additional chamber or not. The bottom line of (HT) superconductor-processing to date is that an apparatus exploring supraconductivity has yet to accomplish a service despite its apparent simplicity which rather misleads interpretations associated with the apparatus. One has to ask, for example, how such a service can be rendered in view of an open box declared as being adiabatic but effectively representing everything else but adiabatic conditions (see col. 14, line 47 of U.S. Pat. No. 5,375,531).
Accordingly, U.S. Pat. Nos. 5,287,026 and 5,375,531 are limited to either (i) short effective operating times or (ii) extended operating times in both of which the operating costs increase excessively with operating time and operating capacity because they are directly coupled with the excessive loss of the chill agent or removal thereof or with an excessively limited performance such as in a conventional vacuum chamber or with an increase in investment for (eg. vacuum) pump station equipment required to provide an excess in pumping speed with regard to a conventional counterpart or with a combination thereof, all representing extremely unrelated methods to compensate for an introduction of an energy into the superconductor or its chill system. Also, the operating heat flow remained obscured or undefined in prior art.
An alternative embodiment in U.S. Pat. No. 5,287,026 incorporates an (HT) superconductor to form a track surrounded by flow channels for a cooling liquid or gaseous chill agent in order to use a magnet as a floating body, for example. However, the apparatus was not disclosed to comprise a protection against loss of chill agent during transport and resulting increase of operating costs. S

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Superconductor-based processing does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Superconductor-based processing, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Superconductor-based processing will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2950276

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.