Electricity: electrical systems and devices – Electrolytic systems or devices – Double layer electrolytic capacitor
Reexamination Certificate
2007-10-25
2010-12-14
Thomas, Eric (Department: 2831)
Electricity: electrical systems and devices
Electrolytic systems or devices
Double layer electrolytic capacitor
C252S502000
Reexamination Certificate
active
07852612
ABSTRACT:
A supercapacitor comprises a first electrode, a second electrode, and a separator. The electrodes are created with carbon nanosheets in various configurations. For example, the carbon nanosheets may be disposed orthogonal to a surface to which it is attached and comprise a single graphene layer or multiple graphene layers. The electrodes are impregnated with an electrolyte.
REFERENCES:
patent: 5372686 (1994-12-01), Timberlake et al.
patent: 6104600 (2000-08-01), Suhara et al.
patent: 6361861 (2002-03-01), Gao et al.
patent: 6872330 (2005-03-01), Mack et al.
patent: 7071258 (2006-07-01), Jang et al.
patent: 7566410 (2009-07-01), Song et al.
patent: 7623340 (2009-11-01), Song et al.
patent: 2003/0175462 (2003-09-01), Nishino et al.
patent: 2003/0185741 (2003-10-01), Matyjaszewski et al.
patent: 2003/0224168 (2003-12-01), Mack et al.
patent: 2007/0158618 (2007-07-01), Song et al.
patent: 2007/0258192 (2007-11-01), Schindall et al.
patent: 2008/0212261 (2008-09-01), Ajayan et al.
patent: 2009/0011204 (2009-01-01), Wang et al.
patent: WO 2005084172 (2005-09-01), None
French, B.L., et al., “Structural Characterization of Carbon Nanosheets via X-Ray Scattering”,Journal of Applied Physics, 97, 114317-1 (2005).
J. Schindall, “The Charge of the Ultra-Capacitors”—IEEE-Spectrum- Nov. 2007 retrieved from www.spectrum.ieee.org.
Zhao, Xin, Poster—“Application of Carbon Nanosheets in Supercapacitors”, Presented at 2007 Virginia Innovation Showcase.
Zhao, X. et al., “Thermal Desorption of Hydrogen from Carbon Nanosheets”,Joumal of Chemical Physics, 124, 194704 (2006).
Yeh, Ted, Thesis “The Ultracapacitor Characterization of Functionalized Graphene Sheets,” Apr. 2006, Princeton University, 62 pages.
Affoune et al., “Experimental evidence of a single nano-graphene,” J. Chem. Lett., 2001, vol. 348, pp. 17-20.
Aizawa et al., “Bond softening in monolayer graphite formed on transition-metal carbide surfaces,” Phy. Rev. B, 1990, vol. 42, pp. 11469-11478.
Al-Jishi et al., Phys. Rev. B., 1982, vol. 26, pp. 4514-4522.
Andersson et al., “Structure and electronic properties of graphite nanoparticles,” Phys. Rev. B., 1998, vol. 58, pp. 16387-16385.
Ando et al., “Preparation of carbon nanotubes by arc-discharge evaporation,” Japanese Journal of Applied Physics, Part 2: Letters, 1993, vol. 32, pp. L107-L109.
Ando et al., “Production of petal-like graphite sheets by hydrogen arc discharge,” Carbon, 1997, vol. 35, pp. 153-158.
Baughman et al., Science, 2002, vol. 297, pp. 787-792.
Bonard et al., Solid-State Electron., 2001, vol. 45, pp. 893-914.
Chen et al., “Exfoliation of graphite flake and its nanocomposites,” Carbon, 2003, vol. 41, pp. 619-621.
Chen et al., “Preparation and characterization of graphite nanosheets from ultrasonic powdering technique,” Carbon, 2004, vol. 42, pp. 753-759.
Chen et al., “Preparation of polystyrene/graphite nanosheet composite,” Polymer, 2003, vol. 44, pp. 1781-1784.
Chung et al., Diamond and Related Materials, 2001, vol. 10, pp. 248-250.
Deckman et al., Appl. Phys. Lett., 1982, vol. 41, pp. 377-379.
Deckman et al., J. Vac. Sci. Technol. B, 1983, vol. 1, pp. 1109-1112.
Deckman et al., J. Vac. Sci. Technol. B, 1988, vol. 6, pp. 333-336.
Dresselhaus et al., Adv. Phys., 2000, vol. 49, pp. 705-814.
Ebbesen et al., “Large-scale synthesis of carbon nanotubes,” Nature, 1992, vol. 358, pp. 220-222.
Ferrari et al., “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B, 2000, vol. 61, pp. 14095-14107.
Gonzalez et al., “Electron-electron interactions in grapheme sheets,” Phys. Rev. B, 2001, vol. 63, pp. 134421/1-1/8.
Gröning et al., Solid-State Electron, 2001, vol. 45, pp. 929-944.
Hass, K.C., Phys. Rev. B., 1992, vol. 46, pp. 139-150.
Holloway, Brian C., “Carbon Nanostructures—New Morphologies of an Old Element,”BCHPNNL Presentation, Jun. 14, 2004, 43 pgs.
Huang et al., “Growth of large periodic arrays of carbon nanotubes,” Appl. Phys. Lett., Jan. 20, 2003, vol. 82, No. 3, pp. 460-462.
Hulteen et al., J. Phys. Chem. B, 1999, vol. 103, pp. 3854-3863.
Hulteen et al., J. Vac. Sci. Technol. A, 1995, vol. 13, pp. 1553-1558.
Iijima et al., “Structures of carbon soot prepared by laser ablation,” J. Phys. Chem., 1996, vol. 100, pp. 5839-5843.
Jishi et al., Chem. Phys. Lett., 1993, vol. 209, pp. 77-82 (Abstract).
Jung et al., Appl. Surf. Sci., 2002, vol. 193, pp. 129-137.
Kuang et al., “Low temperature solvothermal synthesis of crumpled carbon nanosheets,” Carbon, 2004, vol. 42, pp. 1737-1741.
Kusakabe et al., “Indication of flat-band magnetism in theoretically designed nanographite with modified zigzag edges,” Journal of Magnetism and Magnetic Materials, 2004, vol. 272-276, pp. E737-E738.
Kusakabe et al., Phys. Rev. B: Condensed Matter and Materials Physics, 2003, vol. 67, pp. 092406 (abstract).
Lespade et al., “Model for raman scattering from incompletely graphitized carbons,” Carbon, 1982, vol. 20, pp. 427-431 (abstract).
Lieberman et al., Principles of plasma discharges and materials processing, New York, Wiley, 1994, pp. 387-411.
Lim et al., J. Non-Cryst. Solids, 2002, vol. 864, pp. 299-302.
Makarova et al., “Magnetic properties of carbon structures, Semiconductors,” (Translation of Fizika i Tckhnika Poluprovodnikov (Saqkt-Peterburg)), 2004, vol. 38, pp. 641-664.
Michaelson, H.B., J. Appl. Phys., 1949, vol. 21, pp. 536-540.
Milne et al., Diamond Relat. Mater., 2001, vol. 10, pp. 260-264.
Nakada et al., “Edge state in grapheme ribbons: nanometer size effect and edge shape dependence,” Phys. Rev. B, 1996, vol. 54, pp. 17954-17961.
Nemanich et al., “First- and second-order Raman scattering from finite-size crystals of graphite,” Phys. Rev. B, 1979, vol. 20, pp. 392-401.
Nemanich et al., Mater. Sci. Eng., 1977, vol. 31, pp. 157-160.
Nicklow et al., “Lattice dynamics of pyrolytic graphite,” Phys. Rev. B., 1972, vol. 3, No. 5, pp. 4951-4962.
Obraztsov et al., “Electron field emission and structural properties of carbon chemically vapor-deposited films,” Diamond and Related Materials, 1999, vol. 8, pp. 814-819.
Obraztsov et al., “Field emission characteristics of nanostructured thin film carbon materials,” Appl. Surf. Sci., 2003, vol. 215, pp. 214-221.
Oshima et al., “Surface phonon dispersion curves of graphite (0001) over the entire energy region,” Solid State Comm., 1988, vol. 65, pp. 1601-1604 (abstract).
Oshiyama et al., “Prediction of electronic properties of carbon-based nanostructures,” Physica B, 2002, vol. 323, pp. 21-29.
Paillard et al., Phys. Rev. B, 1994, vol. 49, pp. 11433-11439.
Park et al., J. Vac. Sci. Technol. B, 2003, vol. 21, pp. 562-566.
Peigney et al., “Specific surface area of carbon nanotubes and bundles of carbon nanotubes,” Carbon, 2001, vol. 39, pp. 507-514.
Pfeiffer et al., Appl. Phys. Lett., 2003, vol. 82, pp. 4149-4150.
Prasad et al., “Heat-treatment effect on the nanosized graphite [π]-electron system during diamond to graphite conversion,” Phys. Rev. B., 2000, vol. 62, pp. 11209-11218.
Prawer et al., Chem. Phys. Lett., 2000, vol. 332, pp. 93-97.
Rao et al., Science, 1997, vol. 275, pp. 187-191.
Raravikar et al., Phys. Rev. B, 2002, vol. 66, pp. 234424/1-235424/9.
Robertson, J., J. Vac. Sci. Technol. B, 1995, vol. 17, pp. 659-665.
Saito, Y., J. Nanosci. Nanotechnol., 2003, vol. 3, pp. 39-50.
Shang et al., “Uniform carbon nanoflake films and their field emissions,” J. Chem. Lett., 2002, vol. 358, pp. 187-191.
Solin, S.A., Physica B&C, 1980, vol. 99, pp. 443-452 (abstract).
Tuinstra et al., “Raman spectrum of graphite,” J. Chem. Phys., 1970, vol. 53, pp. 1126-1130.
Viculis et al., A chemical route to carbon nanoscrolls, Science, 2003, vol
College of William and Mary
Foley & Lardner LLP
Sinclair David M
Thomas Eric
LandOfFree
Supercapacitor using carbon nanosheets as electrode does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Supercapacitor using carbon nanosheets as electrode, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Supercapacitor using carbon nanosheets as electrode will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4179972