Super-elastic rivet assembly

Expanded – threaded – driven – headed – tool-deformed – or locked-thr – Headed fastener element with nut – washer – securing means or cap – Lap bolt or fastener

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C411S070000, C411S501000, C411S512000, C411S902000

Reexamination Certificate

active

06637995

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to metallic fasteners, that is, devices for holding together two objects or parts that are sometimes required to be separate, particularly fasteners having one or more elements made of material that possesses super-elastic properties. The present fasteners are suitable for high-performance industrial applications involving different ranges of operating temperatures and component materials being fastened.
BACKGROUND
The present inventor has previously filed application Ser. No. 09/311,938 entitled “Stress Induced Seat” on May 14, 1999 and application Ser. No. 09/440,064 entitled “Stress Induced Gasket” on Nov. 15, 1999, the entire disclosures of which are expressly incorporated by reference herein and relied upon.
The use of metallic super-elastic alloys, such as Ni—Ti (nitinol) and other bi- or tri-metal alloys, has been documented in a variety of technical applications, including fasteners, connectors, clamps and seals. Many such uses have required temperature in order to activate the material and change its physical state, while others have used mechanical forces that impart stress to cause a super-elastic physical deformation in the material. Of particular concern to the instant inventor is the application of the super-elastic material to fasteners. The use of non-corrosive, metallic super-elastic material offers a decided advantage in high performance fastened assemblies, versus more conventional materials used in fasteners such as a bolt and nut, rivet, or a clevice pin. Particularly it can withstand more wear than alloys used in conventional fasteners due to its harder surface characteristics. It can also withstand extreme vibrations and not loosen due its elastic pre-loaded condition without using conventional adhesives to hold the assembled components and/or the fastener itself together. Adhesives used with conventional fasteners make them very difficult to disassemble, whereas it is generally possible to make a super-elastic fastener completely reversible. Moreover, super-elastic fasteners can be made that do not require the components being assembled to have special threads or other structures, which are more costly to manufacture.
U.S. Pat. Nos. 5,395,193 and 5,584,631 to Krumme et al., discuss the use of nickel-titanium shape memory retainers in an optimized elastic condition that have super-elastic or pseudo-elastic properties. These fasteners are said to be useful for eyeglass assembly, however, the pin used in these fasteners is not manufactured from super-elastic material. This type of pin, therefore, does not exhibit optimum wear characteristics against the movement between the eyeglass arm and the frame.
U.S. Pat. No. 5,683,404 to Johnson, entitled “Clamp and Method for its Use”, further discusses shape memory materials that are “pseudo-elastic”, defining these materials in terms of their ability to exhibit super-elastic/pseudo-elastic recovery characteristics at room temperature. Such materials are said to deform from an austenitic crystal structure to a stress-induced structure postulated to be martensitic in nature, returning thence to the austenitic state when the stress is removed. The alternate crystal structures described give the alloy super-elastic or pseudo-elastic properties. Poisson's Ratio for nitinol is about 0.3, but this ratio significantly increases up to approximately 0.5 or more when the shape memory alloy is stretched beyond its initial elastic limit. It is at this point that stress-induced martensite is said to occur, i.e., the point beyond which the material is permanently deformed and thus incapable of returning to its initial austenitic shape. A special tool is employed by Johnson to impart an external stretching force that deforms the material which force is then released to cause the material to return to its original condition. While the device is stretched, a member is captured by it and securely clamped when the stretching force is released. This device is intended for use in clamping and does not contemplate traditional fastening operations of the kind addressed by the present invention. Another use envisioned by Johnson is in connecting the modular components of a medical device, as described in his U.S. Pat. No. 5,858,020, by subjecting a component made of shape memory material to an external stretching stimulus to reduce its transverse dimension. Upon release, the dimension of this component is increased back toward its original size, contacting and imparting a force on an inter-positional member which, in turn, fastens to another component.
A binding or strap device is described in U.S. Pat. No. 5,766,218 to Arnott, ostensibly to provide compressive force via a unidirectional tensioning loop member of shape memory material. The loop is useful in maintaining a constant force on the attached members. This occurs as the tool imparts a stretching/tensioning force. The device bands tissue boundaries together however, its use as a fastener is rather limited.
In U.S. Pat. No. 5,197,720 to Renz, et al., a work piece is held within a clamping tool by an expansion element made of shape memory material that is activated by mechanical force. In this way, torque is transmitted through the shape memory member. U.S. Pat. No. 5,190,546 to Jervis discloses insertion into a broken bone cavity of a split member made of shape memory material using a super-elastic alloy. The split member holds the walls of the bone cavity when radial compressive forces acting on it are released. In order for the radial compressive force to reduce the diameter, the component must be split, allowing the reduction in dimension for insertion.
Others have sought to utilize the properties of shape memory materials as locking, connector and bearing elements, e.g., U.S. Pat. No. 5,507,826 to Besselink, et al., U.S. Pat. No. 5,779,281 to Kapgan, et al., and U.S. Pat. No. 5,067,827 to Arnold, respectively; however, such approaches have required temperature to be applied during use. U.S. Pat. No. 5,277,435 to Kramer, et al. and U.S. Pat. No. 5,876,434 to Flomenblit, et al. similarly has relied upon temperature to activate the shape memory effect. Such dependence on extrinsic activation by temperature introduces an added process step and may further be disadvantageous in certain other applications.
U.S. Pat. No. 5,842,312 to Krumme, et al., entitled, “Hysteretic Damping Apparati and Methods”, employs shape memory tension elements to provide energy dissipation. Such elements can be placed between building structures, etc., which are subject to vibration, serving to absorb the energy created by their relative movement. However, this patent does not contemplate the vibration dampening effect of a super-elastic material in the formation of a fastener.
None of the above-mentioned prior approaches have contemplated the formation of an effective fastener such as envisioned by the present Inventor. Moreover, the aforementioned Krumme, et al patent, although used as a fastener, does not contemplate using a pin manufactured from a super-elastic material.
Accordingly, there is a need to form an assembly using a durable metallic, non-corrosive fastener, beginning with a pin made of a shape memory material in its austenitic state that induces a super-elastic retaining force via stress-induction so that it is juxtaposed with the members being fastened.
There is a further need to form a fastened assembly that dampens vibrations that cause typical fasteners to loosen.
There is another need to form a fastened assembly that does not require temperature for its activation.
There is still a need to form an assembly using a fastener that adjusts for differences in thermal coefficients of expansion or contraction of dissimilar materials comprising those components being fastened.
SUMMARY OF INVENTION
According to an embodiment of the present invention, a fastening assembly has a first component containing a first aperture and a second component containing a second aperture. A pin made of a super-elastic alloy defines a shank with a bor

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Super-elastic rivet assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Super-elastic rivet assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Super-elastic rivet assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3144312

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.