Organic compounds -- part of the class 532-570 series – Organic compounds – Fatty compounds having an acid moiety which contains the...
Reexamination Certificate
2000-08-26
2002-11-26
Carr, Deborah D. (Department: 1638)
Organic compounds -- part of the class 532-570 series
Organic compounds
Fatty compounds having an acid moiety which contains the...
C426S601000, C426S607000, C426S615000
Reexamination Certificate
active
06486336
ABSTRACT:
The present invention relates to sunflower seeds comprising an oil having an increased stearic acid content as compared to wild type plants between 10% and 35% by weight related to the total amount of fatty acids in the oil. The invention also relates to sunflower seeds having a stearic acid content up to 54% by weight or more. The invention further relates to a sunflower oil extractable from the seeds of the invention, to sunflower plants produced from the seeds, to methods for preparing the seeds and the oil, as well as to the use of the oil in various products and to the products comprising the oil.
Sunflower is generally cultivated for obtaining oil which has saturated fatty acids (palmitic and stearic) and unsaturated fatty acids (oleic and linoleic). The stearic acid content is always less than 10% (Gustone, F. D. et al. “The lipid handbook”; Chapman and Hall 1986), normally comprised between 3% and 7%. In relation with the unsaturated fatty acids there are two different kinds of sunflower seeds: the normal sunflower which has a linoleic acid content between 50% and 70% (Knowles, P. F. “Recent advances in oil crops breeding”; AOCS Proceedings 1988) and the high oleic sunflower which has 2-10% of linoleic acid and 75-90% of oleic acid (Soldatov, K. I. “Chemical mutagenesis in sunflower breeding”; Int. Proc. 7th Intern. Sunflower Conference, 352-357, 1976). There is also a sunflower line having a high palmitic acid content, between 22% and 40% (R. Ivanov et al. “Sunflower Breeding for High Palmitic Acid Content in the Oil; Proc. of the 12th Intern. Sunflower Conference, Vol. II, 453-465, 1988) and another line with low saturated fatty acid content (6% or less) (EP-A-496504).
Table 1 shows the fatty acid composition for some known sunflower oil varieties.
TABLE 1
% of fatty acids in sunflower oil
Variety
Palmitic
Stearic
Oleic
Linoleic
Normal
1
5.9
5.7
21.8
66.5
High oleic
1
3.1
4.8
84.9
6.7
Low saturated
2
3.9
2.2
89.9
4.0
High palmitic
3
25.1
4.3
10.6
56.4
1
Fernandez Martinez et al.; Grasas y Aceites 37, (1986)
2
Patent EP-496504
3
This variety has also 3.6% of palmitoleic acid
The saturated fatty acid content of an oil is directly related with the physical and chemical characteristics thereof. In case that said content is sufficiently high, the oil can be a solid at room temperature like some animal fats. Normal sunflower oil is always a liquid under said conditions.
In the food industry like for the production of confectionery or margarine, animal fats or hydrogenated vegetable fats are usually used because a solid or semi-solid product is required. By means of hydrogenation unsaturated fatty acids are converted into saturated fatty acids. Animal fats as well as hydrogenated fats are not very recommendable from a nutritional point of view (chow, C. K. “Fatty acids in food and their health implications”, Dekker, N.Y., 1992). Animal fats have a relatively high cholesterol content. Too much cholesterol in the diet may be detrimental to the health. Therefore animal fats have been substituted in the last years by hydrogenated vegetable fats which do not contain cholesterol.
However, said hydrogenated fats present another problem derived from the hydrogenation process. In said process positional isomerization (shift of double bonds) and stereo-chemical transformations (formation of “trans” isomers) take place. Isomers are produced in an amount of up to 30%-50% of the total fatty acids amount. These isomers are not very healthy from a nutritional point of view (Wood, R., “Biological effects of geometrical and positional isomers of monounsaturated fatty acids in humans”; Dekker, N.Y. (1990); Willet, W. C. & Ascherio, A., “Trans Fatty Acids: Are The Effects Only Marginal ?”, American Journal of Public Health, Vol. 84, 5, (1994)). Therefore, the use of hydrogenated fats in the food industry should be avoided.
Sunflower oil has a desirable content of unsaturated fatty acids. For use in the food industry however, the stearic acid content of the oil must be higher than in the normal sunflower oil (Norris, M. E., “Oil substitutions in food formulations”, Inform. 1, 388-392 (1990)) in order to obtain a more solid product.
It is thus an object of the invention to provide a new natural vegetable oil extracted from mutated seeds, the oil having a higher stearic acid content as compared to oil obtained from wild type seeds.
The invention therefore provides sunflower seeds, comprising a sunflower oil having an increased stearic acid content as compared to wild type seeds, obtainable by treating parent seeds with a mutagenic agent during a period of time and in a concentration sufficient to induce one or more mutations in the genetic trait involved in stearic acid biosynthesis resulting in an increased production of stearic acid, germinating the treated seeds and culturing progeny plants therefrom, collecting and analyzing progeny seeds, selecting seeds that have acquired the desirable genetic trait and optionally repeating the cycle of germination, culturing and collection of seeds.
Preferably the sunflower seeds according to the invention comprise an oil having a stearic acid content of between 19.1 and 35% by weight, related to the total amount of fatty acids in the oil, and are obtainable by treating the parent seeds during 2 hours at room temperature with an alkylating agent such as a solution of 70 mM ethyl methane sulfonate in water.
In another embodiment of the invention the seeds comprise an oil having a stearic acid content of between 10 and 19% by weight related to the total amount of fatty acids in the oil, and are obtainable by treating the parent seeds with a solution of 2 mM sodium azide in water during 2 hours at room temperature.
Sunflower seeds identified as “CAS-3” having an average stearic acid content of 25% by weight, related to the total amount of fatty acids in the oil, have been deposited on Dec. 14, 1994 with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Md. 20852, U.S.A. under deposit accession number ATCC 75968. Sunflower seeds identified as “CAS-4” having an average stearic acid content of 15.4% by weight, related to the total amount of fatty acids in the oil, have been deposited on the same day with the same institution under deposit accession number ATCC 75969.
Seeds having an even higher stearic acid content between 29 and 54% by weight related to the total amount of fatty acids in the oil, may be obtained according to the invention by crossing sunflowers originating from seeds having a stearic acid content between 19.1 and 35% by weight with sunflowers originating from seeds having a stearic acid content between 10 and 19% by weight, and collecting the seeds.
The invention further relates to sunflower oil having a stearic acid content of between 10 and 54% by weight, preferably between 10 and 35% by weight, related to the total amount of fatty acids in the oil, which may be obtained by extracting sunflower seeds of the invention. Sunflower oil having a stearic acid content of 15.4% by weight related to the total amount of fatty acids in the oil, may be obtained by extracting sunflower seeds having the deposit accession number ATCC 75969. Sunflower oil having a stearic acid content of 25% by weight related to the total amount of fatty acids in the oil, is obtainable by extracting sunflower seeds having the deposit accession number ATCC 75968.
Preferably the sunflower oil of the invention has a palmitic acid content between 3 and 40% by weight, an oleic acid content between 3 and 85% by weight and a linoleic acid content between 2 and 84% by weight, all related to the total amount of fatty acids in the oil. Such types of oil may be obtained from seeds produced by crossing the high stearic acid seeds of the invention with seeds having a desirable content of one or more unsaturated and/or saturated fatty acids. Thus tailor-made seeds and tailor-made oil produced therefrom may be obtained by preparing mutants according to the invention and use these in further conventional plant improvement practice by crossing them with other
Fernandez Jose Maria
Garces Rafael
Mancha Manuel
Osorio Jorge
Carr Deborah D.
Christensen O'Connor Johnson & Kindness PLLC
Consejo Superior de Investigaciones Cientificas
LandOfFree
Sunflower seeds and oil having a high stearic acid content does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Sunflower seeds and oil having a high stearic acid content, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sunflower seeds and oil having a high stearic acid content will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2947484