Sugarcane fractioning system

Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues – Plant proteins – e.g. – derived from legumes – algae or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C530S414000, C530S427000, C127S046200, C127S055000, C800S295000

Reexamination Certificate

active

06479636

ABSTRACT:

REFERENCE TO A “MICROFICHE APPENDIX”
Not applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the extraction and purification of protein(s), particularly high value proteins, from transgenic sugarcane wherein cane feedstock is fed through a pressure system (eg. mill), filtered with screens, and purified using a combination of membrane filtration, ion exchange and chromatographic processes.
2. General Background of the Invention
Cane sugar is produced from sugarcane stalks in an extraction process that typically involves a grinding of the stalks to produce sugar cane juice. Cane sugar refers to crystalline sucrose, a dissacharide compound used throughout the world as a sweetener. Crystalline sucrose is primarily produced from sugarcane stalks which are cultivated primarily in tropical and semitropical regions of the earth.
In the past, refined cane sugar has been accomplished in primarily two steps. These include the raw sugar process and the refinery process.
In the raw sugar process, sugar mills located in or near cane fields convert the harvested sugarcane stalks into raw sugar. Raw sugar is then refined to produce the white refined sugar that is primarily used for human consumption.
Several patents have issued that are directed sugarcane processing.
U.S. Pat. No. 4,968,353 issued to Kawasaki et al. provides a method for refining sugar liquor. In the '353 patent, a method for refining a sugar liquor by cristobalite and ion exchange resin is provided. Also, a method for refining a sugar liquor by an ion exchange resin refining system are disclosed. Cristobalite exhibits specific adsorbant properties for various colloidal or suspended substances, while the ion exchange resin exhibits superior decoloring and desalting properties with respect to colorants and salts. By combining refining by cristobalite and refining by the ion exchange resin, there is provided a sugar refining system whereby even non-washed sugar liquor may be refined. The ion exchange resin refining system disclosed includes three series of adsorption towers. Each series basically consists of a strongly basic anion exchange resin and a weakly acidic cation exchange resin, and the towers of each of these three series are shifted in a sequence of the pre-stage adsorption tower, the adsorption tower for regeneration, the post-stage adsorption tower and again back to the pre-stage adsorption tower, so that the ability of the strongly basic anion exchange resin may be displayed to the utmost, while the colorant adsorbant properties and the deanionation properties may be exhibited effectively.
In the Gil et al. U.S. Pat. No. 5,281,279 there is disclosed a process for producing refined sugar directly from plants of cane or beet raw juices which bypasses the traditional manufacturing of an intermediate product called “raw sugar”. After treatment of the sugar juice with a flocculant, the juice has pressurized air dissolved in it, followed by rapid lowering of the pressure to ambient in a dissolved air flotation cell to separate impurities by aeration. Further amounts of flocculent are added, and the juice is passed through a serpentine flocculator comprising a pipe containing a plurality of relatively straight sections interrupted by sharp bends to expose the juice sequentially to different turbulent regimes defined by different ranges of Reynolds numbers to form flocs containing undissolved solids. Flocs and other undissolved solids are separated from the juice by flotation and settling. The sugar juice or liquor is partially evaporated to a concentration between about 45 degrees and 50 degrees Brix to form a syrup, after which the syrup is again contacted with a flocculent. Following further treatment in the serpentine flocculator and dissolved air flotation cell, the remaining syrup is passed through filters such as silica sand, activated carbon and diatomaceous earth. The filtered syrup is contacted with ion exchange resins to decolorize and deash the syrup, and then it is evaporated to a concentration of 62 degrees-64 degrees Brix. Thereafter sugar is crystallized from the syrup.
The apparatus for separating undissolved impurities by flotation and settling passes sugar liquor between an assembly of closely spaced plates having corrugations in a direction perpendicular to the direction of flow of the liquor. The plates are disposed at an angle so that settled impurities may slide to the bottom of the assembly.
In the Theoleyre et al. U.S. Pat. No. 5,865,899 there is disclosed a process for refining a raw sugar, particularly a raw sugar from the sugarcane industry, characterized by remelting the raw sugar for obtaining a raw sugar syrup, carbonatation or phosphatation of the raw sugar syrup, tangential microfiltration and/or tangential ultrafiltration of the raw sugar syrup. The process is completed by discoloration of the sugar syrup and crystalization and/or demineralization of the sugar syrup.
The Kwok U.S. Pat. No. 5,902,409 discloses a process of manufacturing crystal sugar from an aqueous sugar juice such as cane juice or sugar beet juice.
The Pittet et al. U.S. Pat. No. 6,019,851 discloses a process for producing one or more tastands including food and beverage additives from Saccharum officinarum leaves (sugarcane leaves) by means of carrying out one or more physical separation unit operations in a plurality of such leaves, macerates thereof or mixtures of leaves and macerates thereof, whereby one or more natural food additives is separated and isolated from the remainder of the plurality of leaves, macerates thereof or mixtures of leaves and macerates thereof. Such unit operations include pressurization using hydraulic press means, steam distillation, fractional distillation, supercritical carbon dioxide extraction, volatile solvent extraction and/or charcoal column separation means. Also described is apparatus for carrying out such processes as well as the products produced using such processes and organoleptic uses of such products. Also described are compositions comprising (a) such tastands in admixture with (b) an eatable having a bitter and/or metallic taste. The eatable is any ingested material taken by mammals, such as foodstuffs non-caloric food components or medicines including bitter chocolate or a drug such as ibuprofen.
In the Saska U.S. Pat. No. 6,096,136 there is disclosed the use of nanofiltration to decolorize sugar juice or syrup. The resulting permeate may be used directly to crystalize white sugar without an intermediate step of producing a raw sugar; even though the color of the permeate is substantially higher than the highest color that is acceptable in a conventionally decolorized syrup used to crystalize white sugar. Significant cost savings are thus achieved in producing white sugar.
In the Donovan U.S. Pat. No. 6,174,378 there is disclosed a process for purifying cane juice from an aqueous composition thereof that includes the steps of contacting an aqueous sugar feed composition with sufficient lime to increase the pH of the composition of at least about 9.5; (b) filtering the composition through a membrane having a pore size no greater than about 0.5 microns and having a molecular weight cutoff no less than about 5 kD, thereby producing a retentate and a permeate; and (c) contacting the permeate with sufficient carbon dioxide, or other materials designed to precipitate calcium and lower the pH, to adjust the pH to about 6.5-9.0. The feed composition preferably is cane juice, cane syrup, an aqueous composition of raw sugar, a cane sugar refinery stream, or a mixture of one or more such materials.
Recently, two patents issued to Jean-Pierre Monclin (applicant herein) that relate to the production of raw sugar directly from sugarcane and without using conventional refining processes. In the Monclin U.S. Pat. Nos. 5,468,300 and 5,468,301, clarification of extracted cane juice is obtained by either an ultra-centrifugation or ultra filtration, and removal of certain compounds responsible for adverse color quality and viscosity is effec

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sugarcane fractioning system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sugarcane fractioning system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sugarcane fractioning system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2942349

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.