Sugar beet membrane filtration process

Sugar – starch – and carbohydrates – Processes – Carbohydrate manufacture and refining

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C127S043000, C127S046200, C127S048000, C127S052000, C127S054000

Reexamination Certificate

active

06406547

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a process for obtaining sucrose from sugar beets.
The conventional beet sugar manufacturing process involves cleaning the beets, slicing them into cossettes, extracting juice from the cossettes by diffusion, purifying the juice by liming and carbonation, concentrating the juice by multiple effect evaporation, multi-stage boiling of concentrated juice in pans, separation, washing, and drying the sugar.
Purification of beet juice in the conventional process is based on lime treatment. Lime serves many purposes in the juice purification process. It neutralizes the acidity of the juice and precipitates calcium salts of several organic and inorganic acids. The precipitate absorbs other impurities. The lime precipitate produces a porous mass, which facilitates subsequent filtration of juice.
The conventional diffusion process for juice extraction from beets has some disadvantages. The conventional liming process uses large quantities of lime, amounting to about 2.5% of the total weight of beets processed. Beet sugar plants operate lime kilns and transport limestone over long distances for this purpose. The effluent from the liming-carbonation process, consisting of used lime and separated impurities, is disposed as waste. Production of lime and disposal of liming effluent are costly operations. Disposal of liming effluent is becoming increasingly difficult and expensive in many communities.
Conventional dead-end filtration is incapable of separating sucrose from macromolecular impurities in beet juice. Several methods of using microfiltration and ultrafiltration for purification of juice with reduced lime use have been reported, but these methods generally involve inserting microfiltration or ultrafiltration membranes into the conventional beet process at one or more points.
There is a long-standing need for improved processes for obtaining sugar from beets that avoid or at least minimize one or more of the problems existing in the previously used processes.
SUMMARY OF THE INVENTION
The present invention relates to a process for producing sugar from beets. A sucrose-containing feed juice that has been obtained by diffusion from sliced sugar beets is filtered through a first ultrafiltration membrane that has a first molecular weight cutoff. This ultrafiltration step produces a first ultrafiltration permeate and a first ultrafiltration retentate. The first ultrafiltration permeate is filtered through a second ultrafiltration membrane that has a second molecular weight cutoff that is lower than the first molecular weight cutoff. This second ultrafiltration step produces a second ultrafiltration permeate and a second ultrafiltration retentate. The second ultrafiltration permeate is nanofiltered through a nanofiltration membrane, thereby producing a nanofiltration permeate and a nanofiltration retentate. The nanofiltration retentate has a higher concentration of sucrose on a dry solids basis than the feed juice introduced into the first ultrafiltration step, and can be used in evaporation and crystallization operations to produce crystals of white sugar.
It is possible to introduce air into the feed juice prior to the first ultrafiltration, in order to oxidize color-forming materials. This oxidation, while increasing the color of the juice, causes the color-forming materials to polymerise, which facilitates their removal in the subsequent ultrafiltration. Another option is to introduce hydrogen peroxide, ozone, or both, into the feed juice prior to the first ultrafiltration. These materials also facilitate oxidation.
It is preferred to adjust the pH of the feed juice to about 6-8, for example by the addition of a base, prior to ultrafiltration. This can help minimize formation of invert.
The first ultrafiltration membrane preferably has a molecular weight cutoff of at least about 2,000 daltons and a pore size no greater than about 0.1 microns. More preferably, it has a molecular weight cutoff of about 4,000-200,000 daltons. The first ultrafiltration permeate preferably has a color of about 3,000-10,000 icu. (All color values given herein are determined on an ICUMSA scale.)
The process of the present invention can be operated at a number of different process conditions. As representative examples of such conditions, the feed juice can be at a temperature of about 140-200° F. during the first ultrafiltration, more preferably about 160-185° F.
The second ultrafiltration membrane preferably has a molecular weight cutoff of about 500-5,000 daltons, more preferably about 1,000-4,000 daltons. In one particular embodiment of the process, the second ultrafiltration is performed in two stages, the first stage using an ultrafiltration membrane having a molecular weight cutoff of about 3,500-4,000 daltons, and the second stage using an ultrafiltration membrane having a molecular weight cutoff of less than about 3,500 daltons. The second ultrafiltration permeate preferably has a color no greater than about 4,000 icu, more preferably no greater than about 2,500 icu.
In order to minimize loss of sucrose in the retentate from the first and second ultrafiltration steps, it is preferable to include diafiltration steps in the process. “Diafiltration” is used herein to mean ultrafiltration that employs added water in the feed to help flush sucrose through the membrane.
In one such embodiment of the process, the first ultrafiltration retentate is diafiltered through at least a first diafiltration/ultrafiltration membrane. This produces a first diafiltration permeate and a first diafiltration retentate. The first diafiltration permeate is then combined with the first ultrafiltration permeate and filtered through the second ultrafiltration membrane.
Similarly, the retentate from the second ultrafiltration can be diafiltered through at least a second diafiltration/ultrafiltration membrane. This second diafiltration step produces a second diafiltration permeate and a second diafiltration retentate. The second diafiltration permeate is then combined with the second ultrafiltration permeate and subsequently filtered through the nanofiltration membrane.
The retentates from the first and second ultrafiltrations (or diafiltrations) and the nanofiltration permeate can be combined to produce molasses. This combined stream may need to be concentrated by evaporation of water.
In addition to purification of the juice by nanofiltration, it is possible to include in the process ion exchange and/or electrodialysis purification steps. These three purification methods can be used in any sequence. In one particularly preferred embodiment of the process, the nanofiltration retentate is purified by electrodialysis, thereby producing a electrodialyzed juice and an electrodialysis residue, and then the electrodialyzed juice is purified by ion exchange, thereby producing a purified juice. Preferably, no lime and no carbon dioxide are contacted with any of the permeates.
The nanofiltration removes ash (including mono- and divalent cations), invert, organic acids, nitrogenous material and other low molecular weight organic or charged compounds. The nanofiltration and the optional electrodialysis and/or ion exchange preferably remove at least about 65% by weight of the Ca, Mg, K, Na and their associated inorganic and organic anions that are present in the second ultrafiltration permeate. The ion exchange replaces remaining divalent cations such as calcium and magnesium with monovalent cations such as potassium and sodium. Preferably, the nanofiltration retentate has a lower concentration of divalent cations on a dry solids basis than the second ultrafiltration permeate.
The nanofiltration permeate will contain a large percentage of the impurities that were present in the feed juice. For example, in many instances, the nanofiltration permeate will comprise at least about 30% by weight on a dry solids basis of the ash, at least about 30% of the invert, and at least about 25% of the betaine present in the feed juice.
The purified juice (i.e., after nanofiltration and any electr

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Sugar beet membrane filtration process does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Sugar beet membrane filtration process, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Sugar beet membrane filtration process will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2928260

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.