Substrate processing apparatus and substrate processing method

Coating apparatus – With heat exchange – drying – or non-coating gas or vapor...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118S066000, C118S052000, C118S666000, C118S692000, C396S611000

Reexamination Certificate

active

06632281

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a substrate processing apparatus and a substrate processing method for performing coating processing of a resist solution or developing processing, for example, for a substrate such as a semiconductor wafer, a glass substrate for a liquid crystal display, or the like.
2. Description of the Related Art
In a photolithography process in the process of fabricating a semiconductor device, for example, resist coating processing of forming a resist film on the surface of a wafer, exposure processing of exposing the wafer by irradiating a pattern on the wafer, developing processing of developing the exposed wafer, heating processing and cooling processing before the coating processing, before and after the exposure processing, and after the developing processing, and the like are performed. Such processing is performed in processing units provided individually, and these processing units are unified to compose a coating and developing processing system so as to continuously perform such successive processing.
Generally, the coating and developing processing system is composed of a loader/unloader section for carrying a wafer into/out of the coating and developing processing system, a processing section having a coating processing unit, a developing processing unit, a thermal processing unit, and the like and performing the majority of the aforesaid wafer processing, an aligner outside the system for subjecting the wafer to exposure processing, and an interface section, provided adjacent to the processing section and the aligner, for delivering the wafer between the processing section and the aligner.
When the wafer is processed in this coating and developing processing system, in order to prevent impurities such as fine particles from adhering to the wafer, air cleaned by an air purifier or the like is supplied as down-flowing air into the coating and developing processing system, while an atmosphere inside the coating and developing system is exhausted, whereby the wafer can be processed in a clean condition.
Moreover, to realize sensitive exposure, a chemically amplified resist is used. The chemically amplified resist has a basic polymer insoluble in an alkaline developing solution, for example, and an acid generator, and obtains high resolution by causing polarity changes in an exposed portion and an unexposed portion by the use of a catalytic reaction of an acid. In the aligner, a circuit pattern is exposed in a resist film by using a mask, and an elimination reaction is caused to a protective group which protects a hydroxyl group of the basic polymer by the acid produced at this time. Thereafter, the wafer is transferred to the thermal processing unit, where the catalytic reaction of the acid is accelerated to quicken the elimination reaction by PEB (post-exposure baking) which is heating after exposure, and thereby the exposed portion, for example, is made soluble in the alkaline developing solution. The wafer is then transferred to the developing processing unit and the portion which is made soluble is removed by the developing solution, whereby a precise circuit patter is obtained.
In recent years, however, exposure technology in which a beam with a shorter wavelength is used is being developed to form a finer and more precise circuit pattern, and when the beam with the shorter wavelength is used, it is confirmed that impurities at molecular level such as oxygen, basic substances, ozone, and vapor which have been insignificant so far exert a bad influence on the formation of the precise circuit pattern. Specially when the impurities adhere to the wafer on the occasion of exposure, an appropriate pattern is not exposed, and thus a drop in yield can not be avoided.
Accordingly, it is necessary for the impurities not to adhere to the wafer under processing, but the use of clean air as before is inappropriate because the air itself contains impurities such as oxygen.
An acid produced at the time of exposure has high reactivity, and hence shows a neutralization reaction with basic substances in air during the transfer of the wafer. In this case, the acid is deactivated, which causes a change in the formation of a slightly soluble surface layer and the line width of the circuit pattern. The elimination reaction of a protective group depends on the temperature, and some kind of chemically amplified resist causes the elimination reaction of the productive base by a catalytic reaction of the acid, for example, even in the state of an ordinary temperature. Therefore, there is the possibility that the elimination reaction progresses during transfer before PEB, which causes pattern deformation, the deterioration of reproducibility, and the like.
Even in such pattern deformation as can be conventionally ignored, there is still room for improvement in these days when a more precise circuit pattern is demanded, but such clean air and system configuration as before can not meet the demand.
Moreover, the wafer comes and goes between the processing section and the exposure processing section via the interface section. There is the possibility that the neutralization reaction of the acid or the elimination reaction of the productive base occur after exposure as described above, while the acid is not produced before exposure, and consequently the conditions of an atmosphere inside the interface section demanded before and after exposure are different. Thus, the formation of the optimum atmosphere for the condition of the wafer after exposure in the interface section is demanded.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of preventing fine impurities at molecular level from adhering to a substrate such as a wafer or the like.
Another object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of preventing fine impurities at molecular level from adhering to a substrate such as a wafer or the like and individually controlling atmospheres in substrate routes before and after exposure in an interface section to prevent acid deactivation, pattern deformation, and the like.
Still another object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of improving the uniformity of developing line width in a surface of a substrate and between substrates by transferring the exposed substrate to a heating section while inhibiting the progress of a resolution reaction of a resist and performing heating processing there.
To attain the aforesaid objects, according to the present invention, a coating and developing processing system, which is a system for performing coating and developing processing for a substrate and characterized by comprising a loader/unloader section for carrying the substrate into/out of the system; a processing section having a coating processing unit for at least forming a coating film on the substrate, a developing processing unit for developing the substrate, a thermal processing unit for thermally processing the substrate, and a first transfer device for carrying the substrate into/out of the coating processing unit, the developing processing unit, and the thermal processing unit; an interface section having a second transfer device for transferring the substrate at least via a route between the processing section and an aligner for subjecting the substrate to exposure processing; a gas supply device for supplying an inert gas to the interface section; and an exhaust means for exhausting an atmosphere in the interface section in a casing of this system, is provided. Incidentally, the thermal processing unit includes a heating processing unit, a cooling processing unit, and a heating/cooling processing unit, and the like. Further, the processing section may include other processing units such as an extension unit for making the substrate wait and an adhesion unit for supplyin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Substrate processing apparatus and substrate processing method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Substrate processing apparatus and substrate processing method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Substrate processing apparatus and substrate processing method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3127196

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.