Substrate polishing apparatus

Abrading – Precision device or process - or with condition responsive... – By optical sensor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C451S010000, C451S011000, C451S041000, C451S287000, C156S345130

Reexamination Certificate

active

06758723

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a substrate polishing apparatus for polishing a substrate to be polished, including a semiconductor wafer and so on. More particularly, the present invention relates to a substrate polishing apparatus having a film thickness monitor device for continuously monitoring a state of a film thickness of a thin film on a surface to be polished of the substrate (including but not being limited to the state of the film thickness and a state of the film thickness remaining on the surface) in real time during polishing with the substrate polishing apparatus.
Conventional techniques for monitoring a film thickness of a thin film on a substrate for use with a substrate polishing apparatus of the type polishing a substrate include, for example, a film thickness monitor device for monitoring a film thickness of the thin film on a substrate, as disclosed in JP-A-2001-235311 (Japanese Patent Public Disclosure). This apparatus is configured to monitor a film thickness of a thin film on the surface of a substrate on the basis of an intensity of reflected light. Water flows in a columnar form along the surface of the substrate to be polished, and the surface thereof is irradiated with an irradiation light, and the irradiated light is reflected from the surface through the flow of water to be received by an optical fiber.
One aspect of a conventional substrate polishing apparatus is constructed as decribed above. However, a problem exists with such an art in that water flowing in columnar form over a surface to be polished is not stable at a contact point with the surface and tends to vary, thus making it difficult to reliably and accurately monitor a film thickness of a thin film on the surface of the substrate film using reflected irradiated light.
As a similar technique, there is proposed a polishing-end-point detection mechanism as disclosed in JP-A-2001-88021. This mechanism is composed of an optical fiber mounted in a depression in the surface of the table so as to face a light-irradiating and light-receiving surface at one end thereof, and a flow path for feeding a washing liquid, the path having one end opening in the depression. By this configuration, while the washing liquid is being fed into the depression through the flow path, the surface to be polished of a wafer is irradiated with light through the washing liquid in the depression from the optical fiber, and the light reflected on the surface is received through the washing liquid and the optical fiber in the depression. The polishing-end-point is then detected on the basis of surface information about the surface of the substrate obtained from the reflected light.
However, a problem also exists in this art in that a washing liquid may flow in the depression in an irregular way when fed through the flow path. This is particular problem when the washing liquid is fed through a porous member. In such a case, polishing grains contained in a polishing liquid, polished chips of the wafer, polished chips of a polishing pad, and so on enter the depression, and obstruct transmission and reception of irradiated light. Thus, information about the surface of the substrate cannot be obtained with high accuracy.
SUMMARY OF THE INVENTION
It is an object of the present invention to overcome the stated problems of the conventional arts, and to provide a substrate polishing apparatus with a film-thickness monitoring device capable of monitoring a state of a film thickness of a thin film on a surface of a substrate to be polished with high accuracy and relaiability during a polishing operation.
To achieve the stated object, the present invention in a first aspect provides a substrate polishing apparatus for polishing a substrate to be polished by means of a relative movement between the substrate and a polishing member, which comprises a table, the polishing member fixed on top of the table, a substrate support member for pressing the substrate to be polished onto the polishing member; an optical system composed of an optical fiber for irradiating the surface of the substrate with a light through a through-hole disposed in the polishing member, and an optical fiber for receiving the reflected light reflected from the irradiated light on the surface through the through-hole.
The substrate polishing apparatus further comprises: an analysis system for analyzing the reflected light received by the optical system; and a film-thickness monitoring device for monitoring a film thickness of a thin film formed on the surface of the substrate, and a state of progress of polishing the thin film on the surface thereof on the basis of an analysis of the reflected light by means of the analysis system, wherein the table is provided with a liquid-feeding opening for feeding a translucent liquid to the through-hole disposed in the polishing member, the liquid-feeding opening being disposed so that the translucent liquid fed to the through-hole through the liquid-feeding opening flows in a direction roughly perpendicular to the surface of the substrate, i.e., to form a perpendicular flow which fills the through-hole, with the optical fiber being disposed such that the irradiated light and the reflected light pass through a flow portion of the translucent liquid flowing in the direction generally perpendicular to the surface.
Thus, in the configuration of the substrate polishing apparatus in the first aspect of the invention, through-holethrough-hole the surface of the substrate is irradiated with light through a flow portion of the translucent liquid flowing in the direction generally perpendicular to the surface, and the irradiated light reflected from the surface is received through the perpendicular flow of the translucent liquid. Accordingly, particles of foreign materials, including polishing grains contained in the polishing liquid, polished chips of the polishing member or the substrate, etc., cannot enter the perpendicular flow portion of the translucent liquid from a gap between the polishing member and the surface so that the film thickness of the thin film on the substrate can be observed with high accuracy and stability without intervention from those particles.
It is to be noted herein that the translucent liquid to be fed through the liquid-feeding opening may include, but is not limited to, a transparent liquid having a high transparency which is highly transparent immediately after the supply into the through-hole but may become turbid while flowing due to contamination with a polishing liquid. Therefore, the translucent liquid as referred to herein may include, but is not limited to, any transparent or translucent liquid ranging from a transparent liquid having a high degree of transparency to a translucent liquid having a low degree of transparency.
In a second aspect of the invention, the substrate polishing apparatus in the first aspect of the invention is further constructed such that the through-hole has a section extending in a direction perpendicular to a flow of the translucent liquid that is equal in size to the liquid-feeding opening and in fluid communication therewith.
As the through-hole and the liquid-feeding opening have equal sections extending in the direction perpendicular to the liquid flow and are communicated with each other, the translucent liquid fed from the liquid-feeding opening into the through-hole flows in the direction perpendicular to the surface of the substrate to be polished up to the surface. Therefore, even in a small amount, the flow of the translucent liquid is able to serve as a suitable optical path for passage of the irradiated light and the reflected light.
The substrate polishing apparatus in a third aspect of the invention is characterized in that the substrate polishing apparatus in the first or second aspect of the invention is further provided with a liquid-discharging groove on the surface of the polishing member, the liquid-discharging groove being for discharging the translucent liquid rearward from the inner side face of the through-hole in

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Substrate polishing apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Substrate polishing apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Substrate polishing apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3213796

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.