Metal working – Method of mechanical manufacture – Electrical device making
Reexamination Certificate
2001-02-20
2004-04-06
Ciric, Ljiljana (Department: 3753)
Metal working
Method of mechanical manufacture
Electrical device making
C228S101000, C228S122100
Reexamination Certificate
active
06715203
ABSTRACT:
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The invention relates to a method for through-plating a substrate for power semiconductor modules having two metal plates and a ceramic plate which is held as a layer between the metal plates and has a through hole. The invention also relates to a substrate for power semiconductor modules, having two metal plates and a ceramic plate held as a layer between the metal plates. One of the metal plates and the ceramic plate each have through holes aligned with one another, and a solder makes contact between the two metal plates.
In recent years, power semiconductors have been widely used in automobile electronics, power management and increasingly in industrial drive and automation technology as well. Those power semiconductors are generally combined to form modules which are tailored to customer-specific requirements.
In such power semiconductor modules, individual electronic components are generally mounted on a substrate. Such a substrate is usually produced in the form of a sandwich, with a ceramic plate being seated as a layer between two outer metal plates. Those metal plates are generally made of copper, since that material has very good properties in terms of electrical conductivity and thermal conductivity. Such a substrate having the copper/ceramic/copper sandwich is referred to below as a “DCB substrate”.
In order to produce such DCB substrates, the copper plates are oxidized thoroughly and are placed onto the ceramic plate. The copper/ceramic/copper sandwich formed in that way is then heated to approximately 1000° C. during a furnace step, and a copper oxide/alumina eutectic produced in the course thereof joins (bonds) the individual layers inseparably to one another. In order to solder the electrical components, a structure is typically etched into a copper plate, with the other copper plate being soldered onto a base plate (heat sink) for better dissipation of heat.
In other variants of such power semiconductor modules, it may also be necessary to discharge potentials from the known DCB substrates on both sides. In that case, a conductive connection between the two outer copper plates is required, and that is produced through the use of a plated-through hole.
In the known DCB substrates, such a plated-through hole is produced by making a through hole in the ceramic plate. In addition, a separate part is inserted into that hole manually before the sandwich is bonded. Preferably, a copper ball is used for that purpose. However, positioning the copper ball has a first disadvantage which is that the through hole in the ceramic needs to be very precise in order to hold the copper ball exactly, which may be achieved by using a complex laser separation method, for example. Furthermore, separate insertion of the copper ball represents an additional work step as well as an additional material requirement.
An alternative possibility is to press the copper plates together in the through hole in the ceramic plate as a modification of inserting a separate part. Permanent contact between the two plates is then ensured by spot welding. However, that option results in the disadvantage of an increased equipment requirement due to the welding equipment, and the welding operation means that the energy balance of that option is very poor. Both of the aforementioned methods are also very time consuming and costly.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a substrate for power semiconductor modules with a through-plating of solder and a method for its production, which overcome the hereinafore-mentioned disadvantages of the heretofore-known products and methods of this general type and in which the through-plating is simple and economical to produce.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for through-plating a substrate for power semiconductor modules, which comprises providing two metal plates and a ceramic plate with a through hole. The ceramic plate is seated as a layer between the two metal plates and a through hole is formed in one of the metal plates in alignment with the through hole in the ceramic plate. A paste solder is applied to one side of the substrate. A furnace step causes the paste solder to flow into the through holes and make a permanent contact between the two metal plates with solder.
The method according to the invention is advantageously used for the DCB substrates explained in the introduction. Structures are etched into the surface of such a substrate, and further electronic components are soldered onto these structures in a subsequent step. In this context, during this etching operation it is advantageous to produce the through holes in one of the copper plates at the same time that the structures are etched. In this way, two method steps can be combined into one step, which makes for efficient production.
A paste solder is applied to the substrate before the electrical components are soldered. In this case, the paste solder also reaches the point at which the through hole is made in the copper plate. Thus, during a furnace step, in which the electrical components are soldered to the substrate at the same time, the paste solder can flow through the through hole in the copper plate into the through hole in the ceramic plate in order to reach the surface of the other copper plate and therefore make contact between the two copper plates.
In accordance with another mode of the invention, a punch, for example in the form of a truncated cone, comes down onto the substrate after etching, as a result of which an inner border the through hole formed in the top copper plate is shaped into the through hole in the ceramic plate. This advantageously ensures a better flow of the paste solder into the through hole in the ceramic plate in the direction of the other copper plate.
In accordance with a further mode of the invention, in a modification to the etching method described above, the through hole in the top copper plate may advantageously also be formed directly as a result of the punch coming down. In this case, the end of the punch which faces the substrate is in the shape of a pointed cone, for example. Since the copper plate has only a relatively small thickness, the tip of this punch can easily penetrate the copper plate and thereby form the through hole.
In accordance with an added mode of the invention, the through hole in the copper plate has a smaller diameter than the through hole in the ceramic plate. In terms of the running of the solder, an exact tolerance level for the through hole in the ceramic plate is unimportant in this case. Consequently, the desired through holes can be made in the ceramic plate through the use of punching before the ceramic plate is bonded to the oxidized copper plates to form the sandwich substrate.
With the objects of the invention in view, there is also provided a substrate for power semiconductor modules, comprising two metal plates and a ceramic plate seated as a layer between the metal plates. One of the metal plates and the ceramic plate each have a respective, mutually aligned through hole formed therein. A solder makes contact between the two metal plates. The other of the metal plates has a continuous structure without any through holes aligned with the mutually aligned through holes in the one metal plate and in the ceramic plate. That forms a receiving region for the solder which is closed off at one end, together with the mutually aligned through holes in the one metal plate and in the ceramic plate.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a substrate for power semiconductor modules with a through-plating of solder and a method for its production, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the
Loddenkoetter Manfred
Stolze Thilo
Ciric Ljiljana
EUPEC Europaeische Gesellschaft fuer Leistungshalbleiter mbH & C
LandOfFree
Substrate for power semiconductor modules with... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Substrate for power semiconductor modules with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Substrate for power semiconductor modules with... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3258352